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Heat kernel regularization of the effective action for stochastic reaction-diffusion equations
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The presence of fluctuations and nonlinear interactions can lead to scale dependence in the parameters
appearing in stochastic differential equations. Stochastic dynamics can be formulated in terms of functional
integrals. In this paper we apply the heat kernel method to study the short distance renormalizability of a
stochastidpolynomia) reaction-diffusion equation with real additive noise. We calculate the oneeffegtive
action and its ultraviolet scale dependent divergences. We show that for white noise a polynomial reaction-
diffusion equation is one-loofinitein d=0 andd=1, and is one-loop renormalizabledr2 andd= 3 space
dimensions. We obtain the one-loop renormalization group equations and find they run with scale only in
d=2.
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[. INTRODUCTION dent divergences lends itself to a direct calculation of the
renormalization group equationdRGE9 that encode the
Many examples abound where particular spacetime distriscale dependend@r “running”) of these parameters. The
butions of matter are selected over a wide variety of seemRGE fixed points provide information about the asymptotic
ingly possible choices. In many of these cases, these patterstates. For these and other reasons, the divergent structure of
are well described, and their temporal evolution accuratelyhe effective action warrants a detailed analysis in its own
modeled, by nonlinear partial differential equations subjectight.
to noise, or equivalently, by stochastic partial differential In this paper we study the stochastic reaction-diffusion
equations(SPDES$. Concrete examples can be found in the (RD) equation by means of a functional integral representa-
domains of pattern formation, chemical chaos, biologicaltion that will be used to calculate its one-loop effective ac-
morphogenesis, and flame-front propagation, just to name ton. In earlier work we calculated and analyzed #ffective
few [1-3]. As argued in Ref{4] the effective potentials a  potentialfor the RD equatior{the effective action evaluated
superb tool for studying the onset of pattern formatipe.,  for special field configurations that are time indepengsit
symmetry breakingabout the static and spatially homoge- However, the effective potential does not provide informa-
neous solutions of the SPDE. This quantity takes into action about the dynamics of the system or wavefunction
count both interactions and fluctuations to a given number ofenormalization. The effective potential can only signal the
loops. (The loop expansion is a controlled expansion in thestatic homogeneous states around which one can study the
amplitude of the fluctuations.To go beyond the study of onset of pattern formatiorii.e., symmetry breaking but
symmetry breaking and static homogeneous configurationsloes not indicatavhich such statg(if any) is dynamically
it is crucial to be able to include and account for time devel-accessible or most likely. To go beyond the limitations in-
opment and spatial inhomogeneities. Ultimately, we are inherent in an effective potential analysis, and in order to judge
terested in studying the late time behavior of the solutions othe importance of the noise-induced symmetry broken
SPDEs; we would like to know if there is an asymptotic ground state configuration, one should explore the space of
steady state, or state of equilibrium, as this impinges on thdynamical (spatially inhomogeneoussolutions of the sys-
late time behavior of the emergent pattern. The effective potem. For instance, are there solutions that indicate the system
tential does not yield this information, and one must turn tois “thermalizing,” or can we find steady state solutions? An
the effective actionThe effective action contains all the dy- important step in this direction is the analysis of the effective
namical solutions of the SPDE and their asymptotic behavaction undertaken in this paper. In this calculation we en-
ior. It obeys a variational principle wherein its first variation counter short distance divergences that need to be regular-
yields the SPDE. Its exact calculation, however, is very dif-ized. We have chosen to carry out this regularization proce-
ficult. Along the way, one must first “regularize” its short dure by means dfgeneralizefiheat kernel techniques. To do
distance divergences that are dimension dependent. These, we will be required to calculate the fir§htegrated
must be identified, isolated, regulated, and, if possible, renorSeeley-DeWitt coefficients. In addition to the physical RD
malized by suitable redefinitions of the bare parameters afield itself, we must also calculate the contribution from the
pearing in the SPDE. The study of these dimension depemghost field, a necessary ingredient in this formaligh
After the regularization step, we turn to the one-loop
renormalization of the effective action. We find that for ad-

*Electronic mail: hochberg@laeff.esa.es ditive white noise RD systems are one-loop finitedis 0
"Electronic mail: molina@laeff.esa.es andd=1 space dimensions, ar{dt least one-loop renor-
*Electronic mail: visser@kiwi.wustl.edu malizable ind=2 andd=3 space dimensions for polyno-
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mial reaction kinetics. There is no wavefunction renormal-ing in the one-loop effective action associated with field
ization in any of these dimensions, irrespective of the degretheory formulations of SPDESs. In particular, we apply these
of the reaction polynomia[6]. Moreover, the ultraviolet methods to the class of single component reaction-diffusion
renormalizability requires including a bare tadpolg, or  equations
constant term, in the equation of motion.

Application of heat kernel methods to stochastic field D ¢(x)=V[o(x)]+ 7(x), @
theories far from equilibrium may not be familiar, so a few

: -~ where

comments regarding them may be useful. These techniques
have been used primarily for calculating effective actions J
and the one-loop physics in quantum field theoi@&T9 D=——vV? 2
and in curved space quantum field thed®~12]. In the
quantum domain, one is interested in computing quantitieg,q
such as theffective actiorand theeffective potentialwhich N
provide crucial information regarding the structure of the un- V[ $]= 2 ﬁ(ﬁj(X) 3)
derlying theory at different length and time scales and are =0 j! '
important in assessing the theory’s renormalizabildylack
thereoj, the determination of the running of couplings and Here 5(x) is a noise term with normalized probability dis-
parameters, patterns of spontaneous and dynamical symmigibution given byP[ ]. We employ the shorthand notation
try breaking, and the structure of short distateitravioled  x—(x,t). FurthermoreV[ #] is a polynomial of degredl in
and long distanceinfrared divergence$13—17. Moreover,  the concentratiorfor field variableg) and the\;'s are a set
for renormalizable theories, the Computation of the effeCtiVQ)f reaction rates. For Convenience we have p|aced the decay
action (actually, only its divergent part is neededan be (or “mass” term) into the potential and have treated it as
used to extract the RGEs that govern the scale dependence gigther couplingh ;= —m2. It must be noted that this equa-
the couplings and parameters appearing in the thEtBy-  tjon has the form of a purely dissipative system and has a
20]. Though perhaps better known in the context of thesg)ona-fide potential energy terM ¢] [15]. Thus, it makes
fields, these same techniques can be generalized and appligghse to calculate aeffective potentiafor constant field
to reveal the corresponding one-loop physics associated Witkonfigurations, as well as an effective action for inhomoge-
stochastic dynamic phenomena and to systems subject {@ous fields. Both the effective action and the effective po-
fluctuations. _ _ tential are derived by means of a field theory for this SPDE.

As a key technical step, we need to obtain the Green Before continuing, we should point out that there are rea-
functions for certain higher-order differential operators thatggns to believe that aspnenomenologicatquation, the RD
are neither elliptic nor hyperbolioThe operators treated peing considered her@nd others structurally similar to)jt
here are second-order in physical time derivatives anghight not be adequate to describe certain two-body annihi-
fourth-order in space derivativgse set up a generalization |ation processes, or pair reaction kinetics, since recent deri-
of the Schwinger proper time asymptotic expansion to CoMysations based on master equations show that the SPDE in
pute these Green functions and obtain explicit expression&uestion should actually beomplexwith imaginary noise
for the first Seeley—DeWitt coefficient; associatgq with thes‘%leading to negative noise correlation,24,29. On the
operators. We carry this out employing the minimal repre-gther hand, for processes involving particle clustering, these
sentation in which only physical and ghost field variablessame derivations yield real stochastic equations and noise, as
appear in the actiofd]. _ _ well as positive noise correlatioig6]. Of course, there are

_ Atthis stage we emphasize the following: We start from amany sjtuations in which a microscopic derivation of the

given “classical” SPDE, together with a specification of the SppE s entirely out of the question, either because explicit
type of noise and its correlations. Our aim isr@pthis  knowledge of the microscopic details is lacking and/or be-
SPDE to an equivalent generating functional and effectivgayse the random fluctuations owe to uncontrollable contin-
action, at which point QFT techniques can be used. We emyencies. In these situations the benefit of adopting a phenom-
phasize that our approach and use of field theory is rathefpojogical strategy should be self-evident. Finally, the
different from that initiated some years ago, whose aim is tgyppjication of this equation need not be restricted to just
derivethe SPDE and the noise correlations from microphys+nemical diffusion(27].
ics, by mapping a classical master equation to “second- For homogeneous and static concentrations it is sufficient
quantized” variables, and then finally to an action principleq study the effective potentifb]. In this paper we comple-

[21-23. _ _ _ _ ment that analysis by making use of the effective action to
We conclude with a summary and discussion of this work consider inhomogeneous and time dependent field configu-
and prospects for further development. rations. In the minimalist approadsee Ref[4]) one starts

with the normalized generating functiordlJ] encoding the
stochastic dynamics described by the RD equationThis
involves the RD scalar fielgh plus the Jacobian determinant
(denoted here by7) and its adjoint (/) (these determinants

In this paper we demonstrate that heat kernel techniquearise from a change of variab)e§he generating functional
can be used to compute the ultraviolet divergent terms arispartition functior) is given by[4,15]|

Il. STOCHASTIC FIELD THEORY FOR
REACTION-DIFFUSION EQUATIONS
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where the “classical” action igvalid for Gaussian noise: mean fieldg[0]=0, i.e.,(#(X,1));-0=0, where the angular

G, (x,y) =(n(x) n(y))=Aga(x,y)] brackets denote the stochastic average with respect to the
noise probability distributior”[ »]. This is valid for a sym-
S p]= %f an1f d"x, (D é(xy) metric ground state. We next expgnd the ac(@ra.bout this _
mean fleE up to quadratic order in the stochastic fluctuation
~V[(x1)]) g5 2(X1,X2) (D B(Xz) — V[ b(X2)]), d¢p=¢—¢. We can carry out a perturbation expansion in

the small parametedl and compute the one-loop effective
(5)  action to obtaif13]*

with n=d+1 andd the number of space dimensiofise
will keep d as a free parameter throughout this papeora I'[¢]=F ¢]— 0]+ —(Tr log S§,e|d[d>]
general SPDE there may be nonvanishing contributions from

the “ghost” fields (Jacobian determinantswWe follow here —Trlog 3 0]-log [ ¢]—log T ¢]

the discussion of Refl4] to separate the noise two-point

function into the product of ahape g(x,y) and a constant +log J[0]+log J'[0])+ O(A?)

amplitudeA. Irrespective of how we decide to normalize the

shape, the constant amplitudeis always thdoop-counting =S p]-SL0]+ TP ] +0(A?)

parameter of the perturbation expansjidh A loop-counting —g¢]-S0]+ F(El—loop)[(ﬁ] + F%ﬁieloop)[ﬂ +0(A?),
parameter is very useful in organizing such a perturbative

expansion. Moreover, any symmetry that is present in the 9

classical action(5) is preserved at each order in the loop
expansion since the loop-counting parameter multiplies th(¥"here the matrix elements of the Jacobi field operator
entire action(and the source terrd) in Eq. (4). One of the Sfleld[¢] are
advantages of the minimal representation is that it leads to 29 4]
this natural identification of the noise amplituge15]. (2 - >t

We introduce the generating functional for connected cor- (Xl Stetd #11x2) =Sl 6.51,%2) = d¢(X1) 5¢(x2) '
relation functions\N[J] and its Legendre transform, the ef-

fective action'[ ¢] [15] (note the explicit factor of the noise We have anticipated the appearance of divergences in the
amplitude.A) one-loop contribution to the effective action, arising from
W[J]=+ AlogZ[J], 63) Zogzt:[gﬁ‘ fhysical and ghost fields, and have supplied it with
The notation§[ 0] is actually shorthand fog[ ¢[J=0]],
F[¢]:—W[J]+J d"x I(xX){ [ IT(x)— H[0](X)}, and for a symmetric ground state one typically ha<]
(6b) =0 andg[0]=0, unless there is a “tadpole” in the classical
action. In fact, when looking for mean field solutions of the
with zero-loop equation of motion, we will find it convenient to
consider a nonvanishing value of the mean figldD]=v,
[J] #0 and will study fluctuations about this mean value. The
(7)  terms involvingS[0] andS{2)[ 0] appear due to the normal-
ization factor in Eq.(4). The notation “Tr” stands for the
trace and indicates that we are to take (e and space
coincidence limitx,—x andx;— X, followed by an integra-
tion over the common limik. The one-loop effective action
will contain divergent terms and it is precisely these terms
—0, (8 We wishtoisolate and compute. We have collected all such

#[0]

#L31=

The barred fieldsp[J] and ¢[0] are the solutions of the
equations of motion

(mE])
5¢

5F[$]>
5¢

=J(x), and (

3]

respectively. It is usually assumed that the former equation 1ye now drop the overbar o with the understanding that this

has a unique solutios[J] (at least for small), and that for  stands for the conjugate field dfand not the field appearing in the
vanishing sourceJ=0) the unique solution is the vanishing classical(zero-loop action.
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divergences into the expressidi{' '® and we regulate ahead a little: as the Jacobi opera®fX(x;,x,) contains
them by means of a cut-o#. The finite terms are collec- fourth order space derivativébi-harmonic operatoy, rather
tively represented byt 1°P)  There may also be higher- than second order derivatives, the behavior of the DeWitt-
loop contributions, denoted Y(.A2), whenever we need to  Schwinger expansiof7—-11] is qualitativelydifferent in that
emphasize them explicitly. Although these latter contribu-it includesfractional powers of the Schwinger proper time
tions are important for constructing the full effective action, parameter.
that calculation is beyond the scope of the present paper. ~ We now calculate the mean fielg (i.e., the background

In order to compute the one-loop effective action we needield) by studying the solutions of the classical equation of
to obtainS{Z){ ¢]. This Jacobi field operator is diagonal in motion, which is giver(for arbitrary sourceJ) by
coordinate space. For the purpose of this calculation and in
the interest of simplicity, we consider the case of white _)
noise.(Colored noise can be dealt with, but it brings in time | ¢
and space derivatives of the shape function, which compli-
cate the heat kernel analysig-or white noise we have =J(x). (17)
(n(X) n(y))=2Dgy 5"(x,y) and therefore we can write

=(=a—vV?=V'[¢(x)]) (DS(X)~V[H(x)])
1]

If the source vanishes and the mean field is homogeneous

G,(x,y)=2Dg 8"(x,y),=A=2Dy, and static, we have
11
g2(x,y)=38"(x,y), and g; *(x,y)=8"(xy), V'[vo] V[vo] =0, (18
which fixes the noise normalization. which always has at least one real solutj&ih

The Jacobi field operator corresponding to the RD equa- In order to calculate the one-loop effective action for
tion is easy to calculate starting from the classical action. W&kDs, one must include the contribution from the “ghost”

simplify notation and write the zero-noise action as fields. These “ghost” Jacobians are given [5]
Y v
S[o1=4 [ dx(Dg-Vi4)? 7=de{ - 7). andjT=de<DT—5—¢). 19

= %f d'% (9, p— vV2p—V[ $])2. (120  We can now complete the formal calculation of the one-loop
effective action. We havip4]

The Jacobi operator for the physical fie®2),(¢,%1,X,), is "
given by TL$)=Sl4]-Svol+ 5
Stak( b.%1, %) =[(— 9= vV2=V'[ $(x1))(9,— vV? sVt sV
_\// o\ —TrIog(DT——)<D——>

V'[p(x1) )= V"[h(X1) ](D ¢(X1) 5 5¢

=V (x1)D16"(X1,%2), (13

whereV'[ ¢]=dV[ ¢]/d¢p andV"[ ¢]=d>V[ H]/dpH>.
For the ghost field the Jacobi operator is given[#y

TrlogSiald ¢]

—(¢—vo) |[+O(A?), (20

so the one-loop effective action receives one contribution

S(g%)os(qsvxerZ)E[(_ﬁt_ VVZ—V’[(i)(Xl)])((?t— V2 from the phyS|caI field
—V'[¢(x)D]8"(X1,X2), (149 _ A
LDl {2 =7 (Trlog S84 #] - Triog 3 4vo)). (21
and its determinant can be written [a§
and a contribution from the ghost field
def SEhel 6% %) 1= T[ 6] T 1. (15 d
In order to carr h bati i | (1—loop) A T V! oV
. y out the perturbation expansion we also T{koloor— — | Triog| DT~ —|( D— =
need to consider the “free” case defined by the livite] 2 o 59/ 4
—0
T 5
S22 Xo) =[(— = 1V2) (3= ¥¥7)] 8(x1,%2) ‘Tf'og(DT‘ 3 )(D‘ %) 1 22
Vo
=[— 9t +(¥V9)?] 8" (X1, Xy). (16)

We will soon see that individually, each contribution has
Free physical fields have the same Jacobi operator as fremmplicated Seeley-DeWitt coefficients, but when taken to-
ghost fields, so that a4 #]— 0, the physical and ghost field gether, the physical plus ghost sectors yield simpét
contributions to the effective action cancel. We now lookSeeley-DeWitt coefficients.
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Ill. COMPUTING THE ONE-LOOP EFFECTIVE ACTION for them, we note thae S" is the exact solution of the

In this section we construct the regulated expressiorﬁOIIOWIng operator differential equation

r(-1eoPr 47 for the RD equation. We follow closely the

DeWitt-Schwinger(DS) proper time formalism to analyze He sH=— gesz- (29
the ultraviolet divergencels’—11,14-16 (We have striven
to keep this section self-containgd. If one takes matrix elements in the spacetime coordinate ba-

In this formalism the integral representation for
I (A-leop)y 47, Eq. (9), involves a fictitious “time” parameter
s (denoted as Schwinger proper timé&o this end, we define
the following function, wheréA is any operator

sis|x)=|x,t), inserts a complete set of states, and makes use
of the diagonality ofH in the coordinate basifnote that
S§Ie|d[¢] is proportional tos"(x;,X,)], we obtain

ga(A)EJO+xds s le A=A"T(a), (23 H(X)<X|e_SH|X/>:J dy(x|Hly){yle™"x")

=(x|H e SH|x")
with T'(«) the Gamma function. We consider the linait

—0 __i —SH|y’

1
9a(A)— ——y—logA, (24 or equivalently

wherey=0.577.. ., is Euler's constant. Although this inte-
gral is divergent, the difference df/o such integrals is finite
and well defined

Jd
H(x) G(x,x’|s)=— gG(x,x’|s), with

_ G(x.x'|s)=(x|e"*H|x"). (31
lim[g,(B)—g.(A)]=logA—logB
a—0 This latter equation defines the Green funct®(x,x’|s) in
tods terms of the matrix element of the operatrs™ in the co-
= —f —(e Sh—e"SB), (25 ordinate representation. These steps can be repeated for the
o S other Hamiltonians. Fortunately, for the purposes of the

present work, it is not necessary to solve this equation ex-

actly (for eitherHgeq or Hgnos), @s we are interested in the

short distance divergent part of the one-loop effective action.

[ (1=loop) 1= (1 loop)r 474 T(1-loop) 26 What we will do instead is solve the “heat” equatioff9),

L1= e ™1 &1+ Dghost L ] 29 (30), and (31) adiabatically by expanding in small positive
fﬁcd fractional powers of the proper time variabde which is

and comparing with Eq9), the desired proper time integral
for the one-loop effective action is given by

— Tr(e SHeld— g~ S[Holfielq) where all the ultraviolet divergences are to be foudiffer-
ent techniques are required if one is interested in the infrared
des limit). Nevertheless, to get “off the ground” it will be most

— Tr(e SHonost— e~ SlHolgnosy  (27)  useful to have the exact solution to E0) in the free limit
(V[ #]—0). We now turn to this task, which entails solving
.exactly Eq.(29) with Hyee.

Since Eq.(30) looks like a heat equation in a+1 di-
mensional spacetimgarabolic equation in the proper time
He= S A[I]]=(DT =V )(D-V')=V"(D$—V), variablg, we knoyv.how to s_o_lve it together wi.th specified

(289  boundary and/or initial conditions. In the free field limi(
— Gyed » We must solve the following equation

where the “Hamiltonians” in the exponentials are the Jacobi
operators

[Holrei=Sfel #1071, (28b) ;
— 2+ (VV2) 2+ —|Gpd X, X' [8) = 8"(x—X") &(S),
Honos= SZ[#T1=(DT~ V) (D V'), (280 e 75| CredX:X'[8)=8°0x=x7) &(s)
(32
[Holgrost=Sosl 4011 (289 subject to the boundaryinitial) condition Ged(X,x’|0)
H. =D'D (288 ="(x—x"). Strictly speaking, the Green function depends
free ’ on both arguments and x’, but due to the translational
as can be seen by comparing E86) with Egs.(9), (13), invariance of the dynamical equation, we ha@éx,x’|s)

(14), and(16). To proceed with the calculation, we need an =G(x—x’|s)=G(>?—>Z’,t—t’|s) and it suffices to treat it as
explicit form for the operatorg s" (that is, for e~ SHiei, a function of one spacetime coordinate. We can always re-
e S[Holfiel, @~ SHgnost ande™SHolgnos) | or rather, their matrix ~ store its dependence on both spacetime arguments at any
elements, so that we can take the indicated traces. To soltame.
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The formal solution foiG,.., €expanded to fourth order in ential operator of ordem the “heat kernel” expansion

x—x" (along the diagonal is given by should start with an overall factor proportional$0%" and
(t-t)2 tt;%n) contain subdominant terms that are integer powers of
, - 1/ Sl
Grred X, X'[8) =Aqg ex;{— s | S v In principle, these coefficients can be calculated to arbi-
L trarily high order by solving recursion relations obtained by
Cya |X—x'|? substituting Eqs(35a and (35b) into Eq. (30) for He)q and
T od v—\/§ Hghosv respectively. The boundaryinitial) conditions
Grield(X,X'[0) = Ggnos{X,x'[0)= 6"(x,x") imply that by=1
Cy2 (|Jx—x'|?)? andag=1. These coefficients start the Seeley-DeWitt hier-

8d(d+2) > archy and allow for a complete determination of the Seeley-
s DeWitt coefficients appearing in Eq¥369—(36b). For
d;_;,lz)gﬂ second-order differential operators this procedure has now

+0 (33)  become automate®8]. For fourth-order differential opera-
5372 tors considerably less is knowa9].
In practice we will see that only the first Seeley-DeWitt
where coefficients are germane to the problem and that it is suffi-
d cient to find the “integrated” Seeley-DeWitt coefficients.
1|12 77‘“21“(2) 1|94 This permits us to calculate the relevant coefficients by
Ad:(_) _) . and means of a technique based on the Feynman-Hellman for-
A 2(2.m) 4T 9 V2 mula[30], which can itself be viewed as a specialization of
(2m)°l| 5 the Baker-Campbell-Hausdorff formul&1].
We regulate the one-loop effective action by cutting off
d+2n the lower limit of the proper time integral
4 oo
Cd’n:—d' (34 F(El—loop)[ b= §f+ %Tr(e_SHﬁeld— e~ SHolfied)
iH

A (+>ds
. . . ) . — — ~SHghost— @~ S[Hol
Details of the calculation leading to the final expression for + 2 L s Tr(e”®Hohosi— @™ *olghosh),(37)

G(Tee)(x,x'|s) are given in Appendix A.

We also point out that for static and homogeneous backwhere we can identifye=1/02, ,« and I'* 7% ¢] with
ground fields ¢,) the computation of Ggedve] and F}llc’ut'_‘;;p)[g{)]. As the producsH must be dimensionless, we
Ggnostvo] is not much more complicated than that Bfee-  deduce thats has engineering dimensions ¢fime)2 or
Details are presented in Appendix B. These static and homcé'quivalently, (frequency 2. In this stochastic field theory

geneous calculations allow one to compare with the effectivgne cut-off can be taken to be a frequency s€lg, o, and
potential formalism of Refl5], and serve as a check on the g identification allows us to compare between these two

current effective action calculation. , types of cut-off(proper time versus frequencySince these
We adopt the following ansatz to perturbatively solve thegeories arenot Lorentz invariant, a frequency cut-off is not
heat equationg30) for small's (adiabatic approximation “quite” interchangeable with a wavenumber cut-dffhore

_ ey ' _ ' on this point below.

Grieta(X,X'[8) = Gred .X'[9) frerd(x.X'[5), (353 Substituting the above ansatz equati¢®5a—(35b) into

(35b) Eq. (37), making use of the explicit form foBe EQ. (33),
and expanding out the first terms i,y and f 4.5 yields

where (1—loop)
Iy [¢] +eds
= o T“%f gf d"% [ Gyred X,X'[S)]
ffield(X,X'|S):|§) S byp(X,x")

Gghos(xvx, |S) = Gired X, X’ |S) fghosp(!x, |S),

€

fe ’ —If !
=b0+Sl/2b1/2+Sb1+0(83/2), (366) X([ er|d(X1X |S)] [ ghos(x’x |S)])

+o0 lf+mdSJ an[G e(x X,|S)]
-T2 < freel Xs
fghos{X,X’|3):|ZO "2 a(x,x") e S
R X (sY2[by/2(x,x")]—s¥2[ay/2(x,x")]
=agts’aytsatO(s™), (36D v 12
+8[by(x,x")]—s[ay(x,x")]+0(s*?)

are asymptotic series in half-integer powers of the proper
time with coefficient function$,,, anda,, (called “Seeley— o +oo
DeWitt” coefficients. Note that we have had to consider =—32Aq
fractional powers in this sma#l expansion(By considering
simple cases it is easy to convince oneself that for a differ- +s[cy(x,x")]+0(s%?)). (38

B NPT ,
312+ dia d™ (s7°[CyAX,X")]

€
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In arriving at this last expression we have used the fact that

A -
the coincidence limit of the free heat kernel is d=2 Tr¢oPrg)=— 72A( ZG_UZJ d*x dt [cy/5]
[Grred X,X'[8)]=Ags™ ", (39 —log(02 e) f oPx dt[cl]),
which follows immediately from EQq(33). We have also (430

made use of the standard notation to express coincidence

limits. Given any functiorh(x,x"), we write _ A 4 -
y ( ) 1—*(61 |00D)[ ¢] - _ 73A( §E—3l4f d3x dt [Cllﬂ

o
Il
w

lim h(x,x")=[h(x,x")]. (40
x' —x +46_1/4J d®x dt [Cﬂ) . (43d

(Although we also employ the square brackets to denote A all of these cases we only need to solve for the first two
guments of functionals and functions, and to group expres- y

sions, the intended meaning should be clear from context an%d|abat|o(8eeley-DeW|t1 coefficientscy,, andcy; indeed, it

there should be no confusionVe have defineaet Seeley- IS 0(;“)& tlheh_spr?cetlmed!ntegrateubtd%qfﬁ|C|lents, that %re
DeWitt coefficients needed. In highespacedimensionsadditional G,,’'s wou

be required. However, for most practical applications it is
enough to consider €d<3. (Moreover, earlier work re-
Ciiz=byp—ay, V1=012,.... (41)  garding the one-loop effective potential for RD indicates that
this field theory is non-renormalizable fak=4 [5].) This

The Seeley-DeWitt coefficients;,, a,,,, andc,, are func-  dimension range covers the spatially homogeneous lichit (

tions of the mean fielob(i,t) and its derivatives, and as =0), one-dimensionallinean systems ¢=1), surfaces ¢

remarked above, can, in principle, be determined by solving_ 2)» @nd bulk systemévolumes (d=3). We see that the

a recursion relation resulting from inserting the ansatz equad!vergences are of two typegfractiona) powers of the cut-
tions (358 and (35b) into Eq. (30). However, to obtain the off and Ioganthms_of Fhe cut-off. Only the .Iatter can yleld_
form of the divergences of the one-loop effective action wePN€-100p renormalization group beta functions and associ-
need not evaluate these coefficients. It suffices to calculafded RGEs.

the lower bound §—0) of the proper time integral. In the

limit e—0 we find that the divergent terms in the RD effec- IV. CALCULATION OF THE SEELEY-DEWITT

tive action are given by COEFFICIENTS

In this section we present a formalism that canprin-
1 4 ciple, yield all the Seeley-DeWitt coefficients. As we have
(1—1loop) —_ _ —d/i4 n ’ 1 . ; - .
I [¢] zAdA a€ j d'x[Cax,x")] seen in the previous section, the calculation of the one-loop
effective action involves solving auxiliary partial differential

equations of parabolic typ@enoted as heat equations, even
1/2—d/4

. ) if the diffusion is nonstandajd

- ﬁf d"x[cq(x,x")] In this formalism(see Appendix € the first step is to

=— = write

B

JERTZ! Trlexp(—sH)]=Tr{exd — s(Hfeet+ 6H) 1}, (44)
— | s+ | o

(1_ _) where 6H is a lower-order differential operator when com-

4 pared toH or Hi.. We now apply a version of the

(42) F_eynman-HeII_man formuld30,31], as discussed in Appen-
dix C, to obtain

We now list the divergences in the RD one-loop effective Tr exp(A+ eB)]=Ti expA)]+ e T B expA)]
action for the following space dimensions R
1
+ %f &/ Tr{Bexp /A) B
0
d=0 T@ P g]=—2A, Alog(Q? e)f dt[cy5],
— 433 xex(1-/)A}+0(€%). (45

This equation will be the basis for extracting the first two
B (1—loop) 41— —1a integratedSeeley-DeWitt coefficients.
a=1 I [¢]=—2A; Ae j dx dt [Cyp2], The second step is to realize that we only need to look at
(43b  the difference
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Trlexp(—sHiei) ] = Trlexpl — sHghost 1, (46)
and write

Triexp(—s thosb] =Tr{exd —s(Hgeet 6H1) 1},
(479

TI‘[ eXF( —S Hfield)] = TI’{EXF[ - S( Hfree+ S6H 1t oH 2)]}
(47b)

If we take the difference of the previous operators,Gt{e®)
term automatically cancels, as does ®fe?(5H,)?] term,
leaving

Triexp( — SHieig) | — Trlexpl — SHgnos? ]
=—eSTr 6H, exp(—SHied) |

€ 1
+ ESZJ d/ Tr{H, exp — /'SHieo
0

X 5H2 eXF[(l_/)SHfree])}
1

+ €2s? j dZ Tr{6H, exp( — /'S Hieo)
0

X 6H, exd (1— /) SHpeel )} + O(€3). (48)

We now make use of the explicit form of these “Hamilto-
nians.” We write

thost:(DT_V,)(D_VI)
=D'D-(DT-V")V'+2,VV'.V, (49

where in the last term of the right hand side b&tls act on
everythingto the right. We know that the free Hamiltonian is
given by

Hpee=D'D=[— 7+ v*(V?)?], (50)
so that we can identify)H, as
SH,=—[(DT=V")V'=2pVV'-V]. (51)

(Note thatSH; is a linear differential operatgrFrom the
definition of the ghost Hamiltonian

Hiiela=Hghost V(D —V), (52)
we deduce the following form foéH,
SH,=—-V"(D¢—V). (53

(Note thatsH, is a function, not a differential operatpr.
Now consider the first order perturbatifine O(e) term|

X1 =sTH[V"(D¢—V)] exp( — SHree)}- (54)

From the known form of the free kerngee, e.g., EqQ¥33)
or (A11)], and the fact thafH, is a function, this reduces to

X1=Aq s—1/2—d’4f d'x[s V'(D¢—V)]. (55)

This implies that the first-order perturbation does not con-
tribute to the Seeley-DeWitt coefficient,,, though it does
contribute toc,. In fact, we can write

f d”x[cl]=J dxXV'(Dp—V)+---. (56)

This is actually theonly contribution to the relevant Seeley-
DeWitt coefficients(There might have been additional con-
tributions coming from those portions of the second-order
term X, that have space derivatives; fortunately they vanish,
as we now verify). Let us consider

s? (1
X,= Efo 4/ TH[V"(Dp—V)]

X exp —S/ Hied[V'(Dp—V)]
XeXF{_S(l_/) Hfree]}

+szfold/Tr{[V”(D¢—V)]

X exp(—s/ Hied[(DT=V" )V’
—2v(V'V2+(VV")- V)] exd —s(1—/) Heel }.
(57)

We can have any of the following cases:

» No gradients hit the free kernel: the term containing two
factors of[V"(D ¢—V)] is proportional tos?> and can only
contribute toc,, which is not needed in the present context.

» One gradient hits one kernel: from Eq83) or (All),
one can see that there is a factor f-(x"); /(v+/s) of order
s%2. Such a term is odd under the interchange ahdx’ and
will vanish when taking the spacetime trace.

* Two gradients hit the same free kernel: there will be
contributions of the type

’ !
(x=x"); (X X),, 59
d%s
which, after tracing with the free kernel, yield contributions
proportional tas®?. Therefore, these terms contributectg,,
which is not needed.

Continuing in this manner, it is easy to convince oneself
that there are no additional contributions to the required co-
efficientsc,,, andc,. We can finally write

J' d"x[cq,]=0, (593

f d”x[cl]zf d"x[V"(D¢p—V)]. (59b)

Note that the present calculation only yields theegrated
on-diagonal (x=x") Seeley-DeWitt coefficients and is in-
sensitive to any term that vanishes upon integration.

With a little more work along these lines, it is also pos-
sible to obtain the Seeley-DeWitt coefficienfsa;,,] and
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[a,] for the ghost field, anflb,,,] and[b,] for the physical By comparing the zero-loop action equatidr®) with the
field. We only quote the results here divergent terms of the one-loop effective action, it is easy to
see that the latter do not contain any field operators not al-
n _ n , ready present in the barelassical action. The divergent
f d X[a”ﬂ_f d™*2CqaV", 603 Contributions to  the one-loop effective action in
d-dimensions are given by
d
f dnx[al]:f d"x E(V,)2+(DT_V/)V’} (60b) - A El/Z—d/4
PO iug]= 5 Ay | Exaley(d)—cavo)]
n — n ! (E N Z)
d X[bl/z-l— d X2CdylV , (GOC)
+ O( Elfd/4)
n n d 2 T ’ ’ " A €ll27d/4
f d X[b1]=f d"x §(V )*+H(D'=V")V' +V"(Dp—V)]|. :EAdﬁf dx dt{V"( )
0 24
V. ONE-LOOP RENORMALIZATION X[Dp—=V(¢)]+V"(vo)V(vo)}
We have already calculated tkregularized one-loop ef- +0(e! ™). (62)

fective action equatiori20) for the RD equation, and thus,
we may now explore the renormalizability of this field theory
following the prescription reviewed in Rdf20]. In order to
do so we must analyze the divergences of the one-loop e
fective action'! 7'°°®  We must also keep in mind the fact
that the bare theorjj.e., defined by the action equati¢i?)]
does not depend on the arbitrary scalentroduced by the
renormalization scheme. Therefore, just as for the case
QFTs[18,19, we will derive a set of equations that govern
the scale dependence of the parameters appearing in the

Some remarks are in order. First of all we point out the fact

that the one-half Seeley-DeWitt coefficients of the field and
host mutually cancel out. This cancellation is special to the
D system and does not take place for generic SPDEs. Sec-

ondly, the ill-defined quantity €°/0” arising in d=2 must

be replaced by log#%e)=log(Q%0Z, ). The dimension-

cﬂull (but arbitrary parametex) is required to make the ar-

gument of the logarithm dimensionless. It is often more con-
nient to introduce a cut-off in wavenumber, rather than in

effective action from the identity requency. In Lorentz invariant theorié@FTs, for example
these are essentially equivalent and it is usual to adopt units
dI'[¢] where the speed of light is one. In the RD system this would
e = be inappropriate, since the equation is not Lorentz invariant.

Instead, one notes that dimensionally

d(S[p1-Svel)  drd g
=p +u

= +0(A?), [ e]=[proper times]
du du

=[physical timet]?
=[v] ? distancé*, (63

(61)

where theO(.A?) indicates there will be higher-loop contri-
butions to the effective action. In quantum field theory thisgng therefore, in terms of a wavenumber cut-affand a
identity does yield the one-loop RGEs since E&fl) can be  \yavenumber subtraction poifpt
expressed in terms of a sum of independent field operators
(operator basjsand each coefficient of an element of this  « /g —log(Q2e) =log(Q% Q2 o) =log(u*IA%).
basis determines an independent RGE. (64)

As we have already calculated the relevant Seeley-DeWitt
coefficients for the RD equation, we now turn to investigate(This observation is important when comparing different
the one-loop renormalizability of its stochastic field theory.regularization schemes; for instance the effective potential
The renormalizability criteria are based on the following calculation of Ref[5] uses a wavenumber cut-off.
definitions. For renormalizable and super-renormalizable Thirdly, it is of great importance to study thgpe of
theories the counterterms needed to cancel the divergencdivergence arising in the one-loop effective action for the
are equal to, or fewer in number than the terms appearing iRD equation, i.e., logarithms vers(fsactiona) power. From
the zero-loop action, which implies that the Seeley-DeWittthe above we see that the type of divergence depends on the
coefficients are expandable in terms of themeoperator number ofspacedimensiondd. If d is odd, there will never
basis appearing in the classical action. In particular, this babe logarithmic divergences to one-loop order in the RD field
sis set consists ofd;#, V2,164,672, ...,¢"}. For non- theory; to get a logarithm, the space dimensionality must be
renormalizable theories this criterion fails. That is, there areeven. A similar feature holds also for the one-loop effective
terms in the integrated Seeley-DeWitt coefficients that do noaction for QFTs in oddspacetimedimensions[20,33. We
appear in the classical acti¢h4,15,32,33 can conclude that the appearance of logarithmic divergences
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for specific space dimensions is not an artifact of the RD N Z\R \2
field theory, nor of SPDES, nor is it an artifact of the regu- S[¢]=%f d”x( 9 pr— VRVZd’R_Z j—:q&JFQ)
larization scheme we have employed. In QFT the RGEs =00

yield the running of the coupling constants, i.e., give the 57 N \R |2
scale dependence, if and only if, there are logarithmic diver- —~ 7f d“x( didpr— VRV 2hr— ZO j—:¢JR)
gences in the effective action. Thus, we can already predict =0

that the parameters in the RD equation will not run in the N O\R
ultraviolet region(to one-loop orderfor odd space dimen- —f d”x( dipr— VRV 2 dr— >, %qﬁ{q)
sions[33]. =0 J:

Nevertheless, the one-loop effective action in odd space ¢, AR(1—j)
dimensions still contains divergencgbough not ford=1), X | 6vV2pr+ 2 O\ + 62 i | D ,
which must be subtracted by suitable counterterms, but once 2

this subtraction has been performed, the remaining finite part

which can be written in a more compact and transparent
It JooP) js independent of the subtraction scale P P

notation as follows

1 n _ 2
VI. RENORMALIZATION OF THE RD EFFECTIVE S[‘i’]—zf d"X(Drér— VR ¢Rr])
ACTION
In this section we calculate the counterterms needed to - 7J d"X(Drpr— Vil ¢r])?

renormalize the one-loop effective action. We first start with

the bare classical action equatidf?) for the reaction- N ¢!
diffusion equation —f an(DR¢R—VR[¢R])( 5VV2¢R+Z -
N+ 6Z ’(Z_J)D (69)
Sto1=4 [ a2 Vig)?
2 =Srl ¢r 1]+ Sl PRI, (70)

N
=%fdnx(at¢—vv2¢—20?—lj¢i . (69
=

where we have introduced the scale dependent renormalized

action Sg[ ¢g, ]

The bare parametefso subscript are related to the renor- SR[¢R,M]E%j "X (ZYA )y p— vr( ) ZY4 ) V2
malized onegdenoted by a subscrifr) as follows

—V[Z2p \[()]), (71
d=2"Y¢pg, with Z=1+6Z, (66)  with

J
N =ARE BN, 67 VRLGRI=VIZ 2N (1)1 = 2

the renormalizedscale dependenpotential.

The meaning oDy is clear from inspection. The final
equality in Eq.(70) defines the finite, renormalized actiSp
and the divergentbut regulategicounterterm actioi$;. The
individual counterterms appearing 8y will be used to can-
cel off the divergences arising in E2). We carry out this

v=vRrt+ v, (68)

with 6Z, 6\;, and v the corresponding counterterms for
Z, \j, and, respectively.(Our convention for the defini-

tion of the wavefunction renormalization const@nioes not  .oncellation separately in each space dimension since each

follow the standard one in QFf14,15.) case leads to structurally different divergents=e Eq(62)].
Our task consists in demonstrating that all the divergences

appearing in the regulated one-loop effective action can be
cancelled by suitable choices for these counterterms. In ef-
fect, we absorb the divergences into thare parameters of The cased=0 is very simple: in zero space dimensions
the RD equation byenormalizingthese parameters. If we there is no diffusion. There is a brief discussion in Héf.
write the bare action in terms of the renormalized parameterand we do not belabor the point here except to reiterate that
and counterterms, and keep up to linear order in the countein d=0 the RD equation is one-loop renormalizable and one-
terms(which is sufficient for a one-loop analygisve find loop finite.

A. d=0 counterterms and renormalization

036132-10



HEAT KERNEL REGULARIZATION OF THE EFFECTI\E . . . PHYSICAL REVIEW E 63 036132

B. d=1 counterterms and renormalization scale needed to render the argument dimensionless, but this
scale need not coincide with,, the other arbitrary scale
needed to render the argument of the other logarithm,
log(ug/A), dimensionles$33].

In one space dimension tlirmally) divergent effective
action is given by

(1-1o0p) Cua ) If we perform this cancellation, we obtain the following
I [¢r]=—2AA€ j dx dtfcy/p] + O(A”), p-dependent family of solutions for the counterterdag
(73
i 27 A 2\\ "
with A, =T (1/4)[8(mvg)“2]. We did not explicitly write 5 A2 109 TATVRL &]

this term in Eq.(62) since it vanishes identically. 4
From our previous calculation of the Seeley-DeWitt coef- i i

ficients we know thafc,,]=0 (in all dimensions which =gk Iog('“Z/Az);O j_!J(J ~Del*
tells us that in one space dimension there are no divergences,
that is, the theory is one-loop finite and there is no need to ONj

introduce counterterms. Since no renormalization is required, - Zo j_!¢]' (81)
there will be no scale dependence in the parameters appear- .
ing in the RD equation. The beta function®y=ux dO/du  As we are working to one-loop order, we can Zéit) equal
(encoding the scale dependence of the paramedegsthere-  to one inVj;. We can then read off the individual counter-

N R

N

fore zero[at least up to orde®(.4%)], and we have terms from this equation, using the linear independence of
Z=1+0(A?) 74 the basigd;¢,V2¢,1,4,¢2, ... ,»"}, to obtain
5Z=0+0(A?), (823
v=rvr+0(A?), (75)
Sv=0+0(A?), (82b)
Nj=A[+0(A?). (76)
Sho=7g log(u/A)N+0O(A?), (820
C. d=2 counterterms and renormalization TVR
In two space dimensions the divergent effective action is A R 5
given by Eq.(62) 5)\1:8va|09(,%//\)?\3+0(«4 ), (820
AA -
DA )+ 2 2log A% [ dhatlcy], (77
A
whereA,=1/(16mvg). 5>\N-z=8leog(u/A)>xﬁ+ O(A?), (829
From the calculation of the Seeley-DeWitt coefficients we
know that ford=2 SAn_1=0+0(A?), (82f)
[C12]=0, (783 S\ny=0+0(A?). (829
[c1]= VA ¢r](Ddr— Vel ¢rl), (78b) In particular, we see that there is no wavefunction renormal-

ization nor diffusion constant renormalization in two dimen-

where we have written the Seeley-DeWitt coefficigof] in  Sions at one-loop order. The couplings associated with the
terms of the renormalized parameters as we are only workingighest and next-to-highest powers of the fielf{(;,\{)

to one-loop order. Therefore, for the divergent part of effec-do not require renormalization to this order.
tive action we can write As pointed out above, due to the logarithmic divergence
in two dimensions, when we subtract the divergences from

_ > the counterterm action, we are left with a fingedependent
(1-1 ) — 2 "
e % drl= 8valog(M/A)f d"x dt Ve[ ¢r] logarithmic piece in addition to the renormalized action, that
is
X (Dropr— VRl ¢r]). (79
R PL1=S[$1+TE P ]+ TP ]
In order to determine the value of the counterterms and to (1-Ioop)
cancel them off, we must set =Srldr,u]+ Sl drl+ T [ #r]
1-1
10 = — S [ ] + finite. (80) +Tiie™ L ¢a]
4
This cancellation can be made up to a residual finite but scale _ n AA2| Ho f 2% gt (D
dependent logarithm. This is because the difference of two Selér 1]+ —log ul d*x dt(Drér

divergent logarithms can be finite andnzero The counter- , )
terms are proportional to log(A), wherey is an arbitrary = VRl R VRl ¢r]+O(A%). (83
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We insert this expression into E@1) to obtain the one-loop (along the lines given in Ref§21-23) for the two-body
RGE processA+ A—inert, then the corresponding RD equation
turns out to be given bi6]

d
M@(DRQJ)R_VR[(}{)R]):FI}RV%[QSR]_I'O(AZ)- Dp=—2\p*+ 5(x), (89)

(84) where however, the noise must be pure imaginary. A renor-
In arriving at this equation, we have cancelled an overalMalization group analysis of E¢88) shows that the fields
commonfactor of the classical equation of motion, since does not require wavefunction renormalization, nor does the
Dropr— VRl #r]#0 in general. diffusion constantr renormalize. Our one-loop heat kernel
By collecting up the coefficients of the linearly indepen- computation performed for aarbitrary reaction polynomial,
dent terms in Eq(84) we find the corresponding one-loop Eds.(85a and(85b), is in complete accord with these results
RGEs and beta functions =2 to be given by (even though we treat real nojs&®eturning to Eq(88), the
only nonvanishing renormalization is that of the couplig
5 It turns out that the one-loop renormalization group beta
ﬁzzﬂa =0+0(A9), (858 function is exact, and when expressed in terms of the dimen-
sionless renormalized couplingy is given by Ref[6]

d
B,= MdL::om(Az), (85h) B(gR)=bgZ, (89
. in d=2 dimensions, wherk is a positive constar{the value

B d\g _ A g 5 of this constant is not specified in R¢6]).

on—ﬂa— B 87TVR)\2 +0(A, (850 In order to compare these results, we define the following
dimensionless couplings
d\f A

=u——=———\5+0(A4?), 85 A AR

’8"1 M du 8mrg ° (A9 (850 gj 12 0<j<N-2, (90)

- 8mrg )\F '

provided, of course, that for a givgrthe coupling constant
d\R_, )\jRaﬁO. This definition together with the hierarchy of beta

Brys= Mg T 8wy AR+O(A?), (858 functions given in Eq(85) show that the dimensionless cou-
s R pling constantg; satisfy the following one-loop RGE
By :Md)f‘1=0+0(,42) (85f) () dg; A2 AT @)
N—-1 ! )= — =0 - —,
“ B gj Md,u, gj 7\?+2 )\J'R
R
B :Md)\_NZOJrO(A 2). (85g  Where the overdot is shorthand notation fai/du. We now
N du consider an RD equation of the type given in Ef) with

. . . e real noise and for a degree-twbl € 2) reaction polynomial
Since there is no wavefunction nor diffusion constant réNOrquation(3) V[ ]=\o+ /262 This particular choice is

malization the set of one-loop RGEs can be summarized ifjy5qe in order to be able to treat an RD equation as close as
the following way possible in structure to the one in E@8). Apart from the
Vel be] A imaginary versus real noise, the essential difference lies in
P Z RI__ 5 1 dr]+O(A2). (86)  the fact that wémus) have a tadpole term, whereas E8g)
w VR lacks such a term. In this case there is only one dimension-

less coupling which can be defined, namel
This equation agrees with the computation of the RGEs ping y

based on the effective potential, which was calculated in Ref. A AR

[5]. [See Eq.(51) of that papel|. Furthermore, if we define = -z (92
9o 8 R’

= uoexp(), the previous RGE becomes TVR Ng

AV drl A Ve dr] and Eq.(91) implies the following one-loop beta function for
=— +0(A?), (87)  this dimensionless coupling
dr 8wy d¢2R
\ R \ R \ R
. . . . )\2 )\0 )\0 2
which implies the fact that the one-loop RGE d=2 be- B(9o)=9o| =~ —&|="9%| R|=%: (93
haves like an anti-diffusion process in field space. Ay Mg Ao

At this point it is interesting to compare our results with .
independent renormalization group results obtained, for exThis follows from Eq.(85¢) and from the fact thak Yo}
ample, by Cardy in Ref{6]. If a path integral is derived =0.
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Thus, for the purposes of renormalization and calculatingproach involves the physical degrees of freedom plus the
the RGEs, this example demonstrates that it is equivalent téghost” fields, which are needed to account for the func-
start from a complex or real SPDE, and that the field theorytional Jacobian that arises from a certain change of variables
can be derived from microscopic principles or obtained by[4]. For RDs this Jacobian is generally nonvanishing and

means of the procedure outlined in Rif]. must be taken into account in the computation of the char-
acteristic functional. The importance of the effective action
D. d=3 counterterms and renormalization lies in the fact that it is the quantity needed to derive equa-

In three space dimensions the divergent effective action idoNs of motion, which correctly take into account fluctua-
given by Eq.(62) tions and interactions to a given number of loops. The effec-

tive action encodes the dynamics of the system. By contrast,

(1-loop) B P the effective potential can only tell us about static solutions.
I's [pr]l=—2AAz€ f dxdt[ci], (949  |n order to know whether the minima of the effective poten-
tial are relevant as solutions of the late time behavior of the

with Az=T"(3/4)[ 167 (7vg)*?]. system we must see how accessible these solutions are. But
The net Seeley-DeWitt coefficient is given by before any of these questions can be answered, the effective
action must be calculated.
[c1]=V"[¢rI(D pr— Vel ¢r]). (95 The one-loop effective action is given in terms of a func-

tional determinant, which must be regulated and renormal-
ized. The heat kernel technique is an established method
(used in QFY for carrying this out. In QFT the functional
determinant appearing in the one-loop effective action is
usually quadratic in both timeaf) and space derivatives
r{-toony g 1= — 2./4A3€_1/4j X dtV'[ PR (V?). In passing to a Euclidean spacetime, the corresponding
proper time equation for the kernel to be solved &9) is a
X (Dror— V[ #r])+O(A?). (96) heat equation for diffusion im=d+1 dimensions, withs
playing the rée of diffusion time. This is why its Green
In order to determine the value of the counterterms we musfunction (whether exactly or approximately calcula}eis

The vanishing of the index one-half Seeley-DeWitt coeffi-
cient means that the divergent effective actiordin 3 be-
comes

once again set justifiably denoted as the heat kernel. However, for SPDEs,
(1-loop) . such as those considered in Ref], the functional determi-
I [ pr]= —Sol ¢r]+finite. (970 nant in the corresponding one-loop effective action involves

not only a “mismatch” between the number of spatial and
temporal derivatives, but also fourth- or even higher-order
spatial derivatives. We have seen an explicit example of this

The last identification yields the followingu(-independent
set of counterterms

_ 2 in the RD equation treated here, which yields second order in
62=0+0(A%, (%83 time but fourth order in space derivative§%)?, for its as-
Sv=0+0(A?), (98b) sociated operator determinafEven higher derivatives will

be encountered in the one-loop effective actions based on the
_ R_-1/4 2 Sivashinski and the Swift-Hohenberg equations: two time
oho AAghze T+ O(AY, (%89 derivatives but eight spatial derivativesWhile much is
ONy=— AANRe YA+ 0(A2), (980d) known about the standard heat kernel and its associated

Seeley-DeWitt coefficients, very fevas far as the authors
are awargof these ideas have been applied to other types of
field theories whose fluctuations may be of a nonquantum

SN o — ARe 141 O(A2), 08 nature(i'.e.,.no_ise [29]. The heat kernel techniguand it;
N-2= ~AAghye (49 (989 generalizatiohis well suited to regularize one-loop effective
S\n_1=0+0(A2), 08 actions, and thgrefore,_|s very useful to _handle theorles W_|th
N-1 (A%) (980 derivative-type interactions, as well as higher derivative “ki-
6)\N: 0+ O(A 2). (98g) netic” terms.

We have applied these techniques to compute the one

As there is no scale dependent logarithmic divergence dpop effective action for the RD equation. As regards its
one-loop order in three-dimensions, all the beta functionglltraviolet renormalizability, we found that the terms appear-
vanish[33]. ing at one-loop order have the same structure, i.e., involve
the same terms present already at the level of the “classical”

VIl DISCUSSION or ze_ro-loop a}ction. Strictly spgaking, this claim'h_olds true

only if a certain bare constant is added to the original equa-

In this paper we have generalized and applied a methotlon of motion, as we have seen. This constant, or “tad-
based on the DeWitt-Schwinger proper time expansion tgole,” is needed to carry out the one-loop renormalization of
calculate the ultraviolet divergences of the one-loop effectivehe leading divergence that appears in the effective action.
action associated to the RD equation. This particular apMoreover, this constant admits a simple physical interpreta-
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tion and can be ascribed either to a constant flux rate or a®0b). Thus, the question arises if our treatment can be ex-
the mean value of the additive noise source. In regards to thiended and applied to handle RD equations with nonpolyno-
scaleof application of the RD equation, the one-loop renor-mial reaction kinetics. The answer is in the affirmative
malizability indicates that although RD is a macroscopicprovided that the potential admits a real solution to 8@
equation[only intended to make physical sense for scalede.g., V[ ¢#]~sinf{¢]) since we need a constant background
greater than a certain minimum length schlg defined by ~about which to expand the action, as indicated in &@.

the underlying molecular physi¢i one is discussing chemi- Provided such a_solutlon exists, the rest of the ana_IyS|s pre-
cal reactions, we have shown in this paper that the ultra- Sented here carries through as is, up to the extraction of the
violet behavior of the RD equation is controlled, and that€normalization group equationshich will again be nonva-
considered as a strictly phenomenological equation its shoftishing only ford=2). At this point the explicit functional
distance behavior isuch better than one had any right to form of the potential changes the nature of the basis set of
expect The short distance structure of this effective actionindependent field operators that leads to the RGEs. Nonpoly-
has been revealed via the calculation of the Seeley-Dewiftomial reaction kinetics do indeed arise in many applications
coefficients up to one-loop order in the noise amplitude. Byin chemical physics and in the modeling of biological pattern
means of this information, we have been able to establish thrmation, typically in the form of rational function.e.,
one-loop finiteness of RD equations driven by additive white'atios of polynomials and wheneverconstraintsare to be
noise ford=0 andd=1 space dimensions and their renor- iMposed on the modefll,2]. When a coarse-grained field
malizability for d=2 andd=3 space dimensions. ld=2 theoretic approach is applied to density waves in earth-
space dimensions there are logarithmic divergences whicuakes, for example, a stochastic PDE for teealay slip

lead to running,(scale dependentef the parameters that f!eld (wh|ch measures the relative displacement of two elas-
describe the RD equation. There is no wavefunction renorlic media in contact taken along the surface of conteet
malization at one-loop order. These results hold for polynoSults which depends on the cosine of the slip field,¢oand

mial reaction kinetics of arbitrary degréé (Note: The ab- is driven by additive white noisg34]. Thus, the work pre-
sence of wavefunction renormalization has already beef€nted here is broad in scope. . .
demonstrated for the case of(@mpley RD equation de- _Finally, these results also have the following practical ap-
scribing pair reactionsN=2), where it turns out that the _pl!catlon: as analytlc_calculatyons can be carried on_ly so far,
one-loop beta function id=2 is exact6].) When taken as 't1S clear that r!ume_r_|cal studies of SPDEs are c_rum_al. Ul_tra-
a model for pattern development, this result becomes evel0let renormalizability corresponds to the situation in which
more striking since this means we can safely use the ROPNg distance physics is largely insensitive to the details of

equation to investigate the important short distance and smajhort distance physics. In considering numerical studies of
time limit of the field correlations that arise in pattern for- th€ RD equation, we can therefore assert the cutpstnsi-

mation, as already remarked earlier. tivity of the numerical solutions, at least to one-lodm

The RGE results obtained here are identical to those ddlumerical studies, the ultraviolet cut-off is provided by the
rived (by different meansfrom an effective potential calcu- attice spacing. This is of paramount importance since a
lation for RD equations presented in RES]. The effective ~ numerical study of RD will give us the information needed
potential is the effective action restricted to constant fieldl© See if the system thermalizes, if it has steady state solu-
configurations and plays an important role in uncovering pattions, and most importantly, if the minima of the effective
terns of symmetry breaking and in the onset of pattern forpo_tennal calculated in Ref5] are explored in the time evo-
mation. Nevertheless, the claim of the one-loop renormalizlution of the system.
ability made in Ref.[5] requires the investigation of the
wavefunction renormalization which was beyond the scope ACKNOWLEDGMENTS
of that paper. The work presented here is also intended to
complete and complement that discussion. Moreover, as This work was supported in part by the Spanish Ministry
pointed out there, the combined effects of noise and interac®f Education and Culture and the Spanish Ministry of De-
tions is to shift the symmetric states of the system, as well afense(D.H. and C.M.P. In the US, support was provided by
to change the nature of the linear instabilities that may béhe US Department of Enerdf..M.P. and M.V). Addition-
induced by perturbations around these new states. A spatiélly, M.V. wishes to acknowledge support from the Spanish
pattern is, by definition, a spatially inhomogeneous configuMinistry of Education and Culture through the Sabbatical
ration with a higher or lesser degree of symmetry, if any suct’rogram, and to recognize the kind hospitality provided by
symmetry is at all present. Thus, to investigate the onset dfAEFF (Madrid, Spain. The authors would like to grate-
the spatial-temporal patterns resulting from fluctuations andully acknowledge discussions with Juanr@e-Mercader,
interactions, one must go beyond the effective potential. Thigvhose interest and support was crucial in completing this
requires working with inhomogeneous fields and the effecwork.
tive action.

The cautious reader will have noticed that most of the
calculations developed here depend solely on the reaction
potentialVV and its derivatives and not on the fact thats a
polynomial. In fact, this is easy to see from the structure of In this Appendix we calculate the free Green function
our Seeley-DeWitt coefficients Egb93—(59b) and(60g9—  appearing in Eq(33). The only “difficult” part of the analy-

APPENDIX A: FREE GREEN FUNCTION FOR THE RD
EFFECTIVE ACTION
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sis is dealing with the fourth-order spatial bi-harmonic op-One can also check that the boundary condition is satisfied,

erator (V2)2. Using translational invariance to s&tx’ before integrating ovew, by simply settings=0 in Eq.
—x, and introducing Fourier transformsllk=d% dw) as  (A4). Let us now work out the momentum integration.
follows The angular integration is given by
. dk [+=dQ. - (kx)
_ ; a2 d(d-2)12
Gf,ee(xt,00|s)—f (Zw)”j— Gf,ee(kwm f dQq_q explik-X)=(27) (o0@ 22 (A8)
xex;{i(IZ-i— wt—0s)], (A1) The exact Green function or kernel for our free “heat” op-
erator in Eq.(32) is
we easily find that
- 1\12 2\ 1
- . Gfree(xt,00|s)=<—> exp( - —)—
Gied kw| Q)= ————F——, A2 4ms 4s (27T)d/2
free( | ) w2+(Vk2)2—IQ ( )
—+ oo
- X ki~ tdkexd —s(vk?)?
wherek?=Kk-k. By inverting the Fourier transform equation fo L= s(rk7]
(A1) one obtains the following integral representation for the
free Green function J(a- 2y K[X]) A9
(k|x|)@-272 | (A9)
d

Gfree(xiols):fwf j 2T o +(Vk2)2—|Q

This solves the differential equatiof32) and satisfies the
e boundary conditiont,ee(i,t|0)=5d(>2)8(t) for vanishing
xexpli(k-x—ot=Q0s)]. (A3) " proper times, hence this is theniquesolution of Eq.(32).
Important point:as remarked above, translational invari-
ance implies thatGyedXt,yt'|S) = Gge|X—Y|, (t—t')|S).
We are treating stochastic processes on a flat
d+ 2-dimensional backgroundi{space dimensions plus real
ephy5|cal timet plus Schwinger proper tims).
Using the Taylor series representation

We first perform the integral oveld by means of a contour
integral in the compleX2-plane. There is only one simple
pole on the negative imaginar§2-axis and we close the
(semi-circulay contour(centered at the origjnin the lower

half plane. As the radius of this arc goes to infinity, only th
contribution along the redl-axis remains $>0). As a re-

sult and by the Residue Theorem we hdttee contour is 1,(2) (1)/+w (—)"(z/2)"

closed in the clockwise sense == T
s 2 nzo nr(/+n+1)’ (A10)

Z/
d

dw
Gfree(X10|S)=f 2n )dj _eXF{'(k X—ot)] and integrating Eq(A9) term-by-term, we find thatafter
making use of the time and space translational invariance of
X exp(— s[ w?+ (vk?)?]). (A4)  the Green function
1/2
We can go further and compute the integral exactly to Gred Xt,X't'[S) = ( 1 ) (sp?)~ 94
obtain 4ms
1\ 2\ r di (t—tH?] 1
Gired X,0/5) = 7 s) ex’{_fs)f(zﬂ-)d XX T T od+1,_d12
s d
x exfl —s(vk?)?+iK-x], (A5) . L I
< 1 11272 Ix—x'|2\"
and the remaining momentum integral is manifestly conver- Xn:o T4 d s
gent(for d>0). As for the boundary condition, note that for n!F(§+n
s—0, limg_oGyedXt,00|s) = 8(t,0)5%(x,0) (in the sense of
distributions as it must, since (A11)
1 1/2 (t t’ )
—~lim| —— _t2 — AR —di4
8(t) lm(%S) exy —t%/(4s)], (AB) Aq ex;{ s E ( )
d
and — -
xC F(z (' _X,|2)n (A12)
- dk - dn ,
ﬁ(x):f e, (A7) a2 v\
(2m)¢
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where [a0]=1, (B6)
d/2 d ’
1\112 T I 1 1)\ 94 [a1/2]=2 Cq1V'[vo], (B7)
Ad_( ) 2(2m)T d)(ﬁ) - and d
(2mT 3 [ay]= 5—1)V'[UOJV'[UOJ. (B8)
d+2n
4 Finally, for the net Seeley-DeWitt coefficients, we can write
Can d (A13)
F(— [co]=0, (B9)
4
Special attention should be paid to the fact that this free [€1/2]=0, (B10)
Green function involves a series half-integer powers of
Schwinger proper timey/s, a feature that we use in choosing [c1]=—V"[volVIvo]. (B11)
our ansatz for the full Green function.
These results are consistent with the net integrated Seeley-
APPENDIX B: HOMOGENEOUS FIELD DeWitt coefficients and with the physical and ghost inte-
CONFIGURATIONS grated Seeley-DeWitt coefficients presented in the body of

the papefEgs.(593—(60d)].
For constanthomogeneous and statifields, ¢=uv, the pape(Eqs. (593-(60d]

associated “heat kernel” can be solved fxactly We sim-
ply present the final result and skip the details of a calcula- APPENDIX C: THE FEYNMAN-HELLMAN FORMULA
tion that is an analog of that foG;.{X,x’|s). The on-
diagonal Green functio{2),(x,x|s) is given by

Gi(x,x|8) = Ags™ 2" exd — s(V"[vo]V[vo]

We write the Feynman-Hellman formula in the fof80]

d 1
&eXQAJr eB)=J’ d/ exd /(A+eB)]B
0

+ o

C
VooV Too]) 1 2 (V52 V' [vel) - xexd(1-/)(A+eB)].  (CD)

= Gpred X, X|s)eXH — S(V"[vo] V[vo] This equation is central to the computation of the Seeley-

+oo c DeWitt coefficients presented in the paper. For instance, if

+V'[Uo]V'[Uo])]ZO (@ZV’([UO])/%: maitéake the trace and then use the cyclic property, we can

(B1) q

where we have again made use of the definitzy), . We e O HATeB)]=Tr{Bexd (AT eB)]}.  (C2)
conclude that

+o We differentiate the previous equation to obtain
2, (b2 P=exd = s(V'[vo]V[vol + V'[vo]V'[vo])]
= P N
+oo c — TrlexpA+ eB)]=J d/ Tr{Bexd /(A+eB)]B
x 2 (s2V'Tvol) . (82) ¢ ’

xexg(1-/)(A+eB)]}. (C3
We now match the first fractional powerssrand obtain the
Seeley-DeWitt coefficients for a constant field configurationwe can conclude that

Vo
[bol=1, (B3) TrexpA+eB)]=Tr expA)]+ e Tr[Bexp(A)]
2
[b1/2]=2Cq1V'[vo], (B4) + % f ld/Tr{ Bexp/A)B
0
[b1]==V"TvolV[vol. (B5)

xexg(1-/)Al}+0(€%). (CH
The coefficients foG{).can be immediately obtained from

the previous Seeley-DeWitt coefficients by settMf v ] This perturbative expansion is the basis for extracting the
=0. That is first two integratedSeeley-DeWitt coefficients.
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