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Heat kernel regularization of the effective action for stochastic reaction-diffusion equations
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The presence of fluctuations and nonlinear interactions can lead to scale dependence in the parameters
appearing in stochastic differential equations. Stochastic dynamics can be formulated in terms of functional
integrals. In this paper we apply the heat kernel method to study the short distance renormalizability of a
stochastic~polynomial! reaction-diffusion equation with real additive noise. We calculate the one-loopeffective
action and its ultraviolet scale dependent divergences. We show that for white noise a polynomial reaction-
diffusion equation is one-loopfinite in d50 andd51, and is one-loop renormalizable ind52 andd53 space
dimensions. We obtain the one-loop renormalization group equations and find they run with scale only in
d52.

DOI: 10.1103/PhysRevE.63.036132 PACS number~s!: 02.50.Ey, 05.40.2a
str
em
te
te
ec
ia
he
ca
e

e-
ac
r o
th
f
on
el
in
o

tic
th
po
t
-
av
n
if

rt
he
o
a
e

the

e
tic
re of
wn

ion
ta-
c-

d

a-
ion
he

the

in-
ge
en
e of

tem
n

ive
n-

ular-
ce-
o

D
he

op
d-

-

I. INTRODUCTION

Many examples abound where particular spacetime di
butions of matter are selected over a wide variety of se
ingly possible choices. In many of these cases, these pat
are well described, and their temporal evolution accura
modeled, by nonlinear partial differential equations subj
to noise, or equivalently, by stochastic partial different
equations~SPDEs!. Concrete examples can be found in t
domains of pattern formation, chemical chaos, biologi
morphogenesis, and flame-front propagation, just to nam
few @1–3#. As argued in Ref.@4# the effective potentialis a
superb tool for studying the onset of pattern formation~i.e.,
symmetry breaking! about the static and spatially homog
neous solutions of the SPDE. This quantity takes into
count both interactions and fluctuations to a given numbe
loops. ~The loop expansion is a controlled expansion in
amplitude of the fluctuations.! To go beyond the study o
symmetry breaking and static homogeneous configurati
it is crucial to be able to include and account for time dev
opment and spatial inhomogeneities. Ultimately, we are
terested in studying the late time behavior of the solutions
SPDEs; we would like to know if there is an asympto
steady state, or state of equilibrium, as this impinges on
late time behavior of the emergent pattern. The effective
tential does not yield this information, and one must turn
the effective action. The effective action contains all the dy
namical solutions of the SPDE and their asymptotic beh
ior. It obeys a variational principle wherein its first variatio
yields the SPDE. Its exact calculation, however, is very d
ficult. Along the way, one must first ‘‘regularize’’ its sho
distance divergences that are dimension dependent. T
must be identified, isolated, regulated, and, if possible, ren
malized by suitable redefinitions of the bare parameters
pearing in the SPDE. The study of these dimension dep
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dent divergences lends itself to a direct calculation of
renormalization group equations~RGEs! that encode the
scale dependence~or ‘‘running’’ ! of these parameters. Th
RGE fixed points provide information about the asympto
states. For these and other reasons, the divergent structu
the effective action warrants a detailed analysis in its o
right.

In this paper we study the stochastic reaction-diffus
~RD! equation by means of a functional integral represen
tion that will be used to calculate its one-loop effective a
tion. In earlier work we calculated and analyzed theeffective
potential for the RD equation~the effective action evaluate
for special field configurations that are time independent! @5#.
However, the effective potential does not provide inform
tion about the dynamics of the system or wavefunct
renormalization. The effective potential can only signal t
static homogeneous states around which one can study
onset of pattern formation~i.e., symmetry breaking!, but
does not indicatewhich such state~if any! is dynamically
accessible or most likely. To go beyond the limitations
herent in an effective potential analysis, and in order to jud
the importance of the noise-induced symmetry brok
ground state configuration, one should explore the spac
dynamical ~spatially inhomogeneous! solutions of the sys-
tem. For instance, are there solutions that indicate the sys
is ‘‘thermalizing,’’ or can we find steady state solutions? A
important step in this direction is the analysis of the effect
action undertaken in this paper. In this calculation we e
counter short distance divergences that need to be reg
ized. We have chosen to carry out this regularization pro
dure by means of~generalized! heat kernel techniques. To d
so, we will be required to calculate the first~integrated!
Seeley-DeWitt coefficients. In addition to the physical R
field itself, we must also calculate the contribution from t
ghost field, a necessary ingredient in this formalism@4#.

After the regularization step, we turn to the one-lo
renormalization of the effective action. We find that for a
ditive white noise RD systems are one-loop finite ind50
and d51 space dimensions, and~at least! one-loop renor-
malizable ind52 andd53 space dimensions for polyno
©2001 The American Physical Society32-1
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mial reaction kinetics. There is no wavefunction renorm
ization in any of these dimensions, irrespective of the deg
of the reaction polynomial@6#. Moreover, the ultraviolet
renormalizability requires including a bare tadpolel0, or
constant term, in the equation of motion.

Application of heat kernel methods to stochastic fie
theories far from equilibrium may not be familiar, so a fe
comments regarding them may be useful. These techniq
have been used primarily for calculating effective actio
and the one-loop physics in quantum field theories~QFTs!
and in curved space quantum field theory@7–12#. In the
quantum domain, one is interested in computing quanti
such as theeffective actionand theeffective potential, which
provide crucial information regarding the structure of the u
derlying theory at different length and time scales and
important in assessing the theory’s renormalizability~or lack
thereof!, the determination of the running of couplings a
parameters, patterns of spontaneous and dynamical sym
try breaking, and the structure of short distance~ultraviolet!
and long distance~infrared! divergences@13–17#. Moreover,
for renormalizable theories, the computation of the effect
action ~actually, only its divergent part is needed! can be
used to extract the RGEs that govern the scale dependen
the couplings and parameters appearing in the theory@18–
20#. Though perhaps better known in the context of the
fields, these same techniques can be generalized and ap
to reveal the corresponding one-loop physics associated
stochastic dynamic phenomena and to systems subje
fluctuations.

As a key technical step, we need to obtain the Gre
functions for certain higher-order differential operators th
are neither elliptic nor hyperbolic.~The operators treate
here are second-order in physical time derivatives
fourth-order in space derivatives.! We set up a generalizatio
of the Schwinger proper time asymptotic expansion to co
pute these Green functions and obtain explicit express
for the first Seeley-DeWitt coefficients associated with th
operators. We carry this out employing the minimal rep
sentation in which only physical and ghost field variab
appear in the action@4#.

At this stage we emphasize the following: We start from
given ‘‘classical’’ SPDE, together with a specification of th
type of noise and its correlations. Our aim is tomap this
SPDE to an equivalent generating functional and effec
action, at which point QFT techniques can be used. We
phasize that our approach and use of field theory is ra
different from that initiated some years ago, whose aim is
derivethe SPDE and the noise correlations from microph
ics, by mapping a classical master equation to ‘‘seco
quantized’’ variables, and then finally to an action princip
@21–23#.

We conclude with a summary and discussion of this wo
and prospects for further development.

II. STOCHASTIC FIELD THEORY FOR
REACTION-DIFFUSION EQUATIONS

In this paper we demonstrate that heat kernel techniq
can be used to compute the ultraviolet divergent terms a
03613
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ing in the one-loop effective action associated with fie
theory formulations of SPDEs. In particular, we apply the
methods to the class of single component reaction-diffus
equations

Df~x!5V@f~x!#1h~x!, ~1!

where

D5
]

]t
2n¹2, ~2!

and

V@f#5(
j 50

N
l j

j !
f j~x!. ~3!

Here h(x) is a noise term with normalized probability dis
tribution given byP@h#. We employ the shorthand notatio
x5(xW ,t). Furthermore,V@f# is a polynomial of degreeN in
the concentration~or field variablef) and thel j ’s are a set
of reaction rates. For convenience we have placed the de
~or ‘‘mass’’ term! into the potential and have treated it a
another coupling:l1[2m2. It must be noted that this equa
tion has the form of a purely dissipative system and ha
bona-fide potential energy termV@f# @15#. Thus, it makes
sense to calculate aneffective potentialfor constant field
configurations, as well as an effective action for inhomog
neous fields. Both the effective action and the effective
tential are derived by means of a field theory for this SPD

Before continuing, we should point out that there are r
sons to believe that as aphenomenologicalequation, the RD
being considered here~and others structurally similar to it!,
might not be adequate to describe certain two-body ann
lation processes, or pair reaction kinetics, since recent d
vations based on master equations show that the SPD
question should actually becomplexwith imaginary noise
~leading to negative noise correlations! @6,24,25#. On the
other hand, for processes involving particle clustering, th
same derivations yield real stochastic equations and nois
well as positive noise correlations@26#. Of course, there are
many situations in which a microscopic derivation of t
SPDE is entirely out of the question, either because exp
knowledge of the microscopic details is lacking and/or b
cause the random fluctuations owe to uncontrollable con
gencies. In these situations the benefit of adopting a phen
enological strategy should be self-evident. Finally, t
application of this equation need not be restricted to j
chemical diffusion@27#.

For homogeneous and static concentrations it is suffic
to study the effective potential@5#. In this paper we comple-
ment that analysis by making use of the effective action
consider inhomogeneous and time dependent field confi
rations. In the minimalist approach~see Ref.@4#! one starts
with the normalized generating functionalZ@J# encoding the
stochastic dynamics described by the RD equation~1!. This
involves the RD scalar fieldf plus the Jacobian determinan
~denoted here byJ ) and its adjoint (J †) ~these determinants
arise from a change of variables!. The generating functiona
~partition function! is given by@4,15#
2-2
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Z@J#5

E @df# expH F2S@f#1E dnx J~x!f~x!GYAJ AJJ †

E @df#exp$2S@f#/A% AJJ †

, ~4!
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where the ‘‘classical’’ action is@valid for Gaussian noise
Gh(x,y)5^h(x)h(y)&5A g2(x,y)#

S@f#5 1
2 E dnx1E dnx2 „Df~x1!

2V@f~x1!#… g2
21~x1 ,x2! „Df~x2!2V@f~x2!#…,

~5!

with n5d11 and d the number of space dimensions~we
will keep d as a free parameter throughout this paper!. For a
general SPDE there may be nonvanishing contributions f
the ‘‘ghost’’ fields ~Jacobian determinants!. We follow here
the discussion of Ref.@4# to separate the noise two-poin
function into the product of ashape g2(x,y) and a constan
amplitudeA. Irrespective of how we decide to normalize th
shape, the constant amplitudeA is always theloop-counting
parameter of the perturbation expansion@4#. A loop-counting
parameter is very useful in organizing such a perturba
expansion. Moreover, any symmetry that is present in
classical action~5! is preserved at each order in the loo
expansion since the loop-counting parameter multiplies
entire action~and the source termJ) in Eq. ~4!. One of the
advantages of the minimal representation is that it lead
this natural identification of the noise amplitude@4,15#.

We introduce the generating functional for connected c
relation functionsW@J# and its Legendre transform, the e
fective actionG@f̄# @15# ~note the explicit factor of the nois
amplitudeA)

W@J#51A logZ@J#, ~6a!

G@f̄#52W@J#1E dnx J~x!$f̄@J#~x!2f̄@0#~x!%,

~6b!

with

f̄@J#5
dW@J#

dJ
. ~7!

The barred fieldsf̄@J# and f̄@0# are the solutions of the
equations of motion

S dG@f̄#

df̄
D U

f̄[J]

5J~x!, and S dG@f̄#

df̄
D U

f̄[0]

50, ~8!

respectively. It is usually assumed that the former equa
has a unique solutionf̄@J# ~at least for smallJ), and that for
vanishing source (J50) the unique solution is the vanishin
03613
m
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e

e
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n

mean fieldf̄@0#50, i.e.,^f(xW ,t)&J5050, where the angular
brackets denote the stochastic average with respect to
noise probability distributionP@h#. This is valid for a sym-
metric ground state. We next expand the action~5! about this
mean field up to quadratic order in the stochastic fluctuat
df5f2f̄. We can carry out a perturbation expansion
the small parameterA and compute the one-loop effectiv
action to obtain@13#1

G@f#5S@f#2S@0#1
A
2

~Tr logSfield
(2) @f#

2Tr logSfield
(2) @0#2 logJ @f#2 logJ †@f#

1 logJ @0#1 logJ †@0# !1O~A 2!

5S@f#2S@0#1G (12 loop)@f#1O~A 2!

5S@f#2S@0#1Ge
(12 loop)@f#1Gfinite

(12 loop)@f#1O~A 2!,

~9!

where the matrix elements of the Jacobi field opera
Sfield

(2) @f# are

^x1uSfield
(2) @f#ux2&5Sfield

(2) ~f,x1 ,x2!5
d2S@f#

df~x1! df~x2!
.

~10!

We have anticipated the appearance of divergences in
one-loop contribution to the effective action, arising fro
both the physical and ghost fields, and have supplied it w
a cut-off e.

The notationS@0# is actually shorthand forS†f@J50#‡,
and for a symmetric ground state one typically hasf@0#
50 andS@0#50, unless there is a ‘‘tadpole’’ in the classic
action. In fact, when looking for mean field solutions of th
zero-loop equation of motion, we will find it convenient t
consider a nonvanishing value of the mean fieldf@0#5v0
Þ0 and will study fluctuations about this mean value. T
terms involvingS@0# andSfield

(2) @0# appear due to the norma
ization factor in Eq.~4!. The notation ‘‘Tr’’ stands for the
trace and indicates that we are to take the~time and space!
coincidence limitsx2→x andx1→x, followed by an integra-
tion over the common limitx. The one-loop effective action
will contain divergent terms and it is precisely these ter
we wish to isolate and compute. We have collected all s

1We now drop the overbar onf with the understanding that thi
stands for the conjugate field ofJ and not the field appearing in th
classical~zero-loop! action.
2-3
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divergences into the expressionGe
(12 loop) and we regulate

them by means of a cut-offe. The finite terms are collec
tively represented byGfinite

(12 loop) . There may also be higher
loop contributions, denoted byO(A 2), whenever we need to
emphasize them explicitly. Although these latter contrib
tions are important for constructing the full effective actio
that calculation is beyond the scope of the present pape

In order to compute the one-loop effective action we ne
to obtainSfield

(2) @f#. This Jacobi field operator is diagonal
coordinate space. For the purpose of this calculation an
the interest of simplicity, we consider the case of wh
noise.~Colored noise can be dealt with, but it brings in tim
and space derivatives of the shape function, which com
cate the heat kernel analysis.! For white noise we have
^h(x)h(y)&52D0 dn(x,y) and therefore we can write

Gh~x,y!52 D0 dn~x,y!,⇒A52 D0 ,
~11!

g2~x,y!5dn~x,y!, and g2
21~x,y!5dn~x,y!,

which fixes the noise normalization.
The Jacobi field operator corresponding to the RD eq

tion is easy to calculate starting from the classical action.
simplify notation and write the zero-noise action as

S@f#5 1
2 E dnx ~Df2V@f#!2

5 1
2 E dnx ~] tf2n¹2f2V@f#!2. ~12!

The Jacobi operator for the physical field,Sfield
(2) (f,x1 ,x2), is

given by

Sfield
(2) ~f,x1 ,x2![†„2] t2n¹22V8@f~x1!#…„] t2n¹2

2V8@f~x1!#…2V9@f~x1!#„Df~x1!

2V@f~x1!#…‡dn~x1 ,x2!, ~13!

whereV8@f#5dV@f#/df andV9@f#5d2V@f#/df2.
For the ghost field the Jacobi operator is given by@4#

Sghost
(2) ~f,x1 ,x2![@„2] t2n¹22V8@f~x1!#…„] t2n¹2

2V8@f~x1!#…#dn~x1 ,x2!, ~14!

and its determinant can be written as@4#

det@Sghost
(2) ~f,x1 ,x2!#5J @f# J †@f#. ~15!

In order to carry out the perturbation expansion we a
need to consider the ‘‘free’’ case defined by the limitV@f#
→0

Sfree
(2) ~x1 ,x2!5@~2] t2n¹2! ~] t2n¹2!# dn~x1 ,x2!

5@2] t
21~n¹2!2# dn~x1 ,x2!. ~16!

Free physical fields have the same Jacobi operator as
ghost fields, so that asV@f#→0, the physical and ghost fiel
contributions to the effective action cancel. We now lo
03613
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ahead a little: as the Jacobi operatorSfree
(2) (x1 ,x2) contains

fourth order space derivatives~bi-harmonic operator!, rather
than second order derivatives, the behavior of the DeW
Schwinger expansion@7–11# is qualitativelydifferent in that
it includes fractional powers of the Schwinger proper tim
parameter.

We now calculate the mean fieldv0 ~i.e., the background
field! by studying the solutions of the classical equation
motion, which is given~for arbitrary sourceJ) by

S dS

df D U
f[J]

5„2] t2n¹22V8@f~x!#… „Df~x!2V@f~x!#…

5J~x!. ~17!

If the source vanishes and the mean field is homogene
and static, we have

V8@v0# V@v0#50, ~18!

which always has at least one real solution@5#.
In order to calculate the one-loop effective action f

RDs, one must include the contribution from the ‘‘ghos
fields. These ‘‘ghost’’ Jacobians are given by@5#

J5detS D2
dV

df D , andJ †5detS D†2
dV†

df D . ~19!

We can now complete the formal calculation of the one-lo
effective action. We have@4#

G@f#5S@f#2S@v0#1
A
2 FTr logSfield

(2) @f#

2Tr logS D†2
dV†

df D S D2
dV

df D
2~f→v0!G1O~A 2!, ~20!

so the one-loop effective action receives one contribut
from the physical field

Gfield
(12 loop)5

A
2

~Tr logSfield
(2) @f#2Tr logSfield

(2) @v0# !, ~21!

and a contribution from the ghost field

Gghost
(12 loop)52

A
2 FTr logS D†2

dV†

df D S D2
dV

df D
f

2Tr logS D†2
dV†

df D S D2
dV

df D
v0

G . ~22!

We will soon see that individually, each contribution h
complicated Seeley-DeWitt coefficients, but when taken
gether, the physical plus ghost sectors yield simplenet
Seeley-DeWitt coefficients.
2-4
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III. COMPUTING THE ONE-LOOP EFFECTIVE ACTION

In this section we construct the regulated express
Ge

(12 loop)@f# for the RD equation. We follow closely th
DeWitt-Schwinger~DS! proper time formalism to analyz
the ultraviolet divergences@7–11,14–16#. ~We have striven
to keep this section self-contained.!

In this formalism the integral representation f
G (12 loop)@f#, Eq. ~9!, involves a fictitious ‘‘time’’ parameter
s ~denoted as Schwinger proper time!. To this end, we define
the following function, whereA is any operator

ga~A![E
0

1`

ds sa21e2sA5A2a G~a!, ~23!

with G(a) the Gamma function. We consider the limita
→0

ga~A!→ 1

a
2g2 logA, ~24!

whereg50.577. . . , is Euler’s constant. Although this inte
gral is divergent, the difference oftwo such integrals is finite
and well defined

lim
a→0

@ga~B!2ga~A!#5 logA2 logB

52E
0

1`ds

s
~e2sA2e2sB!, ~25!

and comparing with Eq.~9!, the desired proper time integra
for the one-loop effective action is given by

G (12 loop)@f#5Gfield
(12 loop)@f#1Gghost

(12 loop)@f# ~26!

52
A
2 E0

1`ds

s
Tr~e2sHfield2e2s[H0] field!

1
A
2 E0

1`ds

s
Tr~e2sHghost2e2s[H0] ghost!, ~27!

where the ‘‘Hamiltonians’’ in the exponentials are the Jac
operators

Hfield5Sfield
(2)

†f@J#‡5~D†2V8!~D2V8!2V9~Df2V!,
~28a!

@H0#field5Sfield
(2)

†f@0#‡, ~28b!

Hghost5Sghost
(2)

†f@J#‡5~D†2V8!~D2V8!, ~28c!

@H0#ghost5Sghost
(2)

†f@0#‡, ~28d!

H free5D†D, ~28e!

as can be seen by comparing Eq.~26! with Eqs. ~9!, ~13!,
~14!, and~16!. To proceed with the calculation, we need
explicit form for the operatorse2sH ~that is, for e2sHfield,
e2s[H0] field, e2sHghost, ande2s[H0] ghost), or rather, their matrix
elements, so that we can take the indicated traces. To s
03613
n

i

lve

for them, we note thate2sH is the exact solution of the
following operator differential equation

He2sH52
]

]s
e2sH. ~29!

If one takes matrix elements in the spacetime coordinate
sis ux&[uxW ,t&, inserts a complete set of states, and makes
of the diagonality ofH in the coordinate basis@note that
Sfield

(2) @f# is proportional todn(x1 ,x2)#, we obtain

H~x! ^xue2sHux8&5E dy^xuHuy&^yue2sHux8&

5^xuH e2sHux8&

52
]

]s
^xue2sHux8&, ~30!

or equivalently

H~x! G~x,x8us!52
]

]s
G~x,x8us!, with

G~x,x8us![^xue2sHux8&. ~31!

This latter equation defines the Green functionG(x,x8us) in
terms of the matrix element of the operatore2sH in the co-
ordinate representation. These steps can be repeated fo
other Hamiltonians. Fortunately, for the purposes of
present work, it is not necessary to solve this equation
actly ~for eitherHfield or Hghost), as we are interested in th
short distance divergent part of the one-loop effective acti
What we will do instead is solve the ‘‘heat’’ equations~29!,
~30!, and ~31! adiabatically by expanding in small positiv
fractional powers of the proper time variables, which is
where all the ultraviolet divergences are to be found~differ-
ent techniques are required if one is interested in the infra
limit !. Nevertheless, to get ‘‘off the ground’’ it will be mos
useful to have the exact solution to Eq.~30! in the free limit
(V@f#→0). We now turn to this task, which entails solvin
exactly Eq.~29! with H free.

Since Eq.~30! looks like a heat equation in an11 di-
mensional spacetime~parabolic equation in the proper tim
variable!, we know how to solve it together with specifie
boundary and/or initial conditions. In the free field limit (G
→Gfree), we must solve the following equation

F2] t
21~n¹2!21

]

]sGGfree~x,x8us!5dn~x2x8! d~s!,

~32!

subject to the boundary~initial! condition Gfree(x,x8u0)
5dn(x2x8). Strictly speaking, the Green function depen
on both argumentsx and x8, but due to the translationa
invariance of the dynamical equation, we haveG(x,x8us)
5G(x2x8us)5G(xW2xW8,t2t8us) and it suffices to treat it as
a function of one spacetime coordinate. We can always
store its dependence on both spacetime arguments at
time.
2-5
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The formal solution forGfree, expanded to fourth order in
x2x8 ~along the diagonal!, is given by

Gfree~x,x8us!5Ad expF2
~ t2t8!2

4s G s21/22d/4

3F12
Cd,1

2d

uxW2xW8u2

nAs

1
Cd,2

8d~d12!

~ uxW2xW8u2!2

n2 s

1OS ~ uxW2xW8u2!3

s3/2 D G , ~33!

where

Ad5S 1

4p D 1/2 pd/2 GS d

4D
2~2p!d GS d

2D S 1

n2D d/4

, and

Cd,n5

GS d12n

4 D
GS d

4D . ~34!

Details of the calculation leading to the final expression
G(free)(x,x8us) are given in Appendix A.

We also point out that for static and homogeneous ba
ground fields (v0) the computation of Gfield@v0# and
Gghost@v0# is not much more complicated than that forGfree.
Details are presented in Appendix B. These static and ho
geneous calculations allow one to compare with the effec
potential formalism of Ref.@5#, and serve as a check on th
current effective action calculation.

We adopt the following ansatz to perturbatively solve t
heat equations~30! for small s ~adiabatic approximation!

Gfield~x,x8us!5Gfree~x,x8us! f field~x,x8us!, ~35a!

Gghost~x,x8us!5Gfree~x,x8us! f ghost~x,x8us!, ~35b!

where

f field~x,x8us!5(
l 50

1`

sl /2 bl /2~x,x8!

5b01s1/2b1/21s b11O~s3/2!, ~36a!

f ghost~x,x8us!5(
l 50

1`

sl /2 al /2~x,x8!

5a01s1/2a1/21s a11O~s3/2!, ~36b!

are asymptotic series in half-integer powers of the pro
time with coefficient functionsbl /2 andal /2 ~called ‘‘Seeley–
DeWitt’’ coefficients!. Note that we have had to consid
fractional powers in this smalls expansion.~By considering
simple cases it is easy to convince oneself that for a dif
03613
r

k-

o-
e

r

r-

ential operator of ordern the ‘‘heat kernel’’ expansion
should start with an overall factor proportional tos2d/n and
then contain subdominant terms that are integer power
s2/n.!

In principle, these coefficients can be calculated to ar
trarily high order by solving recursion relations obtained
substituting Eqs.~35a! and~35b! into Eq. ~30! for Hfield and
Hghost, respectively. The boundary~initial! conditions
Gfield(x,x8u0)5Gghost(x,x8u0)5dn(x,x8) imply that b051
and a051. These coefficients start the Seeley-DeWitt hi
archy and allow for a complete determination of the Seel
DeWitt coefficients appearing in Eqs.~36a!–~36b!. For
second-order differential operators this procedure has n
become automated@28#. For fourth-order differential opera
tors considerably less is known@29#.

In practice, we will see that only the first Seeley-DeWi
coefficients are germane to the problem and that it is su
cient to find the ‘‘integrated’’ Seeley-DeWitt coefficients
This permits us to calculate the relevant coefficients
means of a technique based on the Feynman-Hellman
mula @30#, which can itself be viewed as a specialization
the Baker-Campbell-Hausdorff formula@31#.

We regulate the one-loop effective action by cutting o
the lower limit of the proper time integral

Ge
(12 loop)@f#[2

A
2 Ee

1`ds

s
Tr~e2sHfield2e2s[H0] field!

1
A
2 Ee

1`ds

s
Tr~e2sHghost2e2s[H0] ghost!, ~37!

where we can identifye51/Vcut-off
2 and Ge

(12 loop)@f# with
GVcut-off

(12 loop)@f#. As the productsH must be dimensionless, w

deduce thats has engineering dimensions of~time! 2 or
equivalently,~frequency! 22. In this stochastic field theory
the cut-off can be taken to be a frequency scaleVcut-off , and
this identification allows us to compare between these
types of cut-off~proper time versus frequency!. Since these
theories arenot Lorentz invariant, a frequency cut-off is no
‘‘quite’’ interchangeable with a wavenumber cut-off~more
on this point below!.

Substituting the above ansatz equations~35a!–~35b! into
Eq. ~37!, making use of the explicit form forGfree Eq. ~33!,
and expanding out the first terms off field and f ghost yields

Ge
(12 loop)@f#

A 52 1
2 E

e

1`ds

s E dnx @Gfree~x,x8us!#

3„@ f field~x,x8us!#2@ f ghost~x,x8us!#…

52 1
2 E

e

1`ds

s E dnx @Gfree~x,x8us!#

3„s1/2@b1/2~x,x8!#2s1/2@a1/2~x,x8!#

1s@b1~x,x8!#2s @a1~x,x8!#1O~s3/2!…

52 1
2 AdE

e

1` ds

s3/21d/4E dnx „s1/2@c1/2~x,x8!#

1s @c1~x,x8!#1O~s3/2!…. ~38!
2-6
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In arriving at this last expression we have used the fact
the coincidence limit of the free heat kernel is

@Gfree~x,x8us!#5Ad s21/22d/4, ~39!

which follows immediately from Eq.~33!. We have also
made use of the standard notation to express coincide
limits. Given any functionh(x,x8), we write

lim
x8→x

h~x,x8!5@h~x,x8!#. ~40!

~Although we also employ the square brackets to denote
guments of functionals and functions, and to group expr
sions, the intended meaning should be clear from context
there should be no confusion.! We have definednet Seeley-
DeWitt coefficients

cl /2[bl /22al /2 , ; l 50,1,2, . . . . ~41!

The Seeley-DeWitt coefficientsbl /2 , al /2 , andcl /2 are func-
tions of the mean fieldf(xW ,t) and its derivatives, and a
remarked above, can, in principle, be determined by solv
a recursion relation resulting from inserting the ansatz eq
tions ~35a! and ~35b! into Eq. ~30!. However, to obtain the
form of the divergences of the one-loop effective action
need not evaluate these coefficients. It suffices to calcu
the lower bound (s→0) of the proper time integral. In the
limit e→0 we find that the divergent terms in the RD effe
tive action are given by

Ge
(12 loop)@f#52

1

2
AdAS 4

d
e2d/4E dnx @c1/2~x,x8!#

2
e1/22d/4

S 1

2
2

d

4D E dnx @c1~x,x8!#

2
e12d/4

S 12
d

4D E dnx @c3/2~x,x8!#1•••D .

~42!

We now list the divergences in the RD one-loop effect
action for the following space dimensions

d50 Ge
(12 loop)@f#522A0 A log~V2 e!E dt @c1/2#,

~43a!

d51 Ge
(12 loop)@f#522A1 A e21/4E dx dt @c1/2#,

~43b!
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d52 Ge
(12 loop)@f#52

A2

2
AS 2e21/2E d2xW dt @c1/2#

2 log~V2 e!E d2xW dt @c1# D ,

~43c!

d53 Ge
(12 loop)@f#52

A3

2
AS 4

3
e23/4E d3xW dt @c1/2#

14e21/4E d3xW dt @c1# D . ~43d!

In all of these cases we only need to solve for the first t
adiabatic~Seeley-DeWitt! coefficientsc1/2, andc1; indeed, it
is only the spacetime integratednet coefficients that are
needed. In higherspacedimensions,additional cl /2’s would
be required. However, for most practical applications it
enough to consider 0<d<3. ~Moreover, earlier work re-
garding the one-loop effective potential for RD indicates th
this field theory is non-renormalizable ford>4 @5#.! This
dimension range covers the spatially homogeneous limitd
50), one-dimensional~linear! systems (d51), surfaces (d
52), and bulk systems~volumes! (d53). We see that the
divergences are of two types:~fractional! powers of the cut-
off and logarithms of the cut-off. Only the latter can yie
one-loop renormalization group beta functions and ass
ated RGEs.

IV. CALCULATION OF THE SEELEY-DEWITT
COEFFICIENTS

In this section we present a formalism that can,in prin-
ciple, yield all the Seeley-DeWitt coefficients. As we hav
seen in the previous section, the calculation of the one-l
effective action involves solving auxiliary partial differentia
equations of parabolic type~denoted as heat equations, ev
if the diffusion is nonstandard!.

In this formalism ~see Appendix C! the first step is to
write

Tr@exp~2sH!#5Tr$exp@2s~H free1dH !#%, ~44!

wheredH is a lower-order differential operator when com
pared to H or H free. We now apply a version of the
Feynman-Hellman formula@30,31#, as discussed in Appen
dix C, to obtain

Tr@exp~A1eB!#5Tr@exp~A!#1e Tr@B exp~A!#

1
e2

2 E0

1

dl Tr$B exp~ l A! B

3exp@~12l !A#%1O~e3!. ~45!

This equation will be the basis for extracting the first tw
integratedSeeley-DeWitt coefficients.

The second step is to realize that we only need to look
the difference
2-7
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Tr@exp~2sHfield!#2Tr@exp~2sHghost!#, ~46!

and write

Tr@exp~2sHghost!#5Tr$exp@2s~H free1dH1!#%,
~47a!

Tr@exp~2sHfield!#5Tr$exp@2s~H free1dH11dH2!#%.
~47b!

If we take the difference of the previous operators, theO(e0)
term automatically cancels, as does theO@e2(dH1)2# term,
leaving

Tr@exp~2sHfield!#2Tr@exp~2sHghost!#

52esTr@dH2 exp~2sHfree!#

1
e2

2
s2E

0

1

dl Tr$dH2 exp~2l sHfree!

3dH2 exp@~12l !sHfree# !%

1e2s2E
0

1

dl Tr$dH1 exp~2l sHfree!

3dH2 exp@~12l !sHfree# !%1O~e3!. ~48!

We now make use of the explicit form of these ‘‘Hamilto
nians.’’ We write

Hghost5~D†2V8!~D2V8!

5D†D2~D†2V8!V812n¹V8•¹, ~49!

where in the last term of the right hand side both¹ ’s act on
everythingto the right. We know that the free Hamiltonian
given by

H free5D†D5@2] t
21n2~¹2!2#, ~50!

so that we can identifydH1 as

dH152@~D†2V8!V822n¹V8•¹#. ~51!

~Note thatdH1 is a linear differential operator.! From the
definition of the ghost Hamiltonian

Hfield5Hghost2V9~Df2V!, ~52!

we deduce the following form fordH2

dH252V9~Df2V!. ~53!

~Note thatdH2 is a function, not a differential operator!
Now consider the first order perturbation@the O(e) term#

X1[s Tr$@V9~Df2V!# exp~2sHfree!%. ~54!

From the known form of the free kernel@see, e.g., Eqs.~33!
or ~A11!#, and the fact thatdH2 is a function, this reduces to

X15Ad s21/22d/4E dnx @s V9~Df2V!#. ~55!
03613
This implies that the first-order perturbation does not co
tribute to the Seeley-DeWitt coefficientc1/2, though it does
contribute toc1. In fact, we can write

E dnx @c1#5E dnx V9~Df2V!1•••. ~56!

This is actually theonly contribution to the relevant Seeley
DeWitt coefficients.~There might have been additional co
tributions coming from those portions of the second-ord
termX2 that have space derivatives; fortunately they vani
as we now verify.! Let us consider

X2[
s2

2 E0

1

dl Tr$@V9~Df2V!#

3exp~2s l H free!@V9~Df2V!#

3exp@2s ~12l ! H free#%

1s2E
0

1

dl Tr$@V9~Df2V!#

3exp~2s l H free!@~D†2V8!V8

22n~V8¹21~¹V8!•¹!# exp@2s ~12l ! H free# %.

~57!

We can have any of the following cases:
• No gradients hit the free kernel: the term containing tw

factors of@V9(Df2V)# is proportional tos2 and can only
contribute toc2, which is not needed in the present conte

• One gradient hits one kernel: from Eqs.~33! or ~A11!,
one can see that there is a factor of (x2x8) i /(nAs) of order
s3/2. Such a term is odd under the interchange ofx andx8 and
will vanish when taking the spacetime trace.

• Two gradients hit the same free kernel: there will
contributions of the type

Cd,1

d i j

nAs
1~Cd,1!

2
~x2x8! i ~x2x8! j

d2s
, ~58!

which, after tracing with the free kernel, yield contribution
proportional tos3/2. Therefore, these terms contribute toc3/2,
which is not needed.

Continuing in this manner, it is easy to convince ones
that there are no additional contributions to the required
efficientsc1/2 andc1. We can finally write

E dnx @c1/2#50, ~59a!

E dnx @c1#5E dnx@V9~Df2V!#. ~59b!

Note that the present calculation only yields theintegrated
on-diagonal (x5x8) Seeley-DeWitt coefficients and is in
sensitive to any term that vanishes upon integration.

With a little more work along these lines, it is also po
sible to obtain the Seeley-DeWitt coefficients:@a1/2# and
2-8
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@a1# for the ghost field, and@b1/2# and@b1# for the physical
field. We only quote the results here

E dnx@a1/2#5E dnx2Cd,1V8, ~60a!

E dnx@a1#5E dnxFd

2
~V8!21~D†2V8!V8G , ~60b!

E dnx@b1/2#5E dnx2Cd,1V8, ~60c!

E dnx@b1#5E dnxFd

2
~V8!21~D†2V8!V81V9~Df2V!G .

~60d!

V. ONE-LOOP RENORMALIZATION

We have already calculated the~regularized! one-loop ef-
fective action equation~20! for the RD equation, and thus
we may now explore the renormalizability of this field theo
following the prescription reviewed in Ref.@20#. In order to
do so we must analyze the divergences of the one-loop
fective actionGe

(12 loop) . We must also keep in mind the fac
that the bare theory@i.e., defined by the action equation~12!#
does not depend on the arbitrary scalem introduced by the
renormalization scheme. Therefore, just as for the cas
QFTs @18,19#, we will derive a set of equations that gove
the scale dependence of the parameters appearing in th
effective action from the identity

m
dG@f#

dm
50

5m
d~S@f#2S@v0# !

dm
1m

dGe
(12 loop)@f#

dm
1O~A 2!,

~61!

where theO(A 2) indicates there will be higher-loop contr
butions to the effective action. In quantum field theory th
identity does yield the one-loop RGEs since Eq.~61! can be
expressed in terms of a sum of independent field opera
~operator basis! and each coefficient of an element of th
basis determines an independent RGE.

As we have already calculated the relevant Seeley-DeW
coefficients for the RD equation, we now turn to investiga
the one-loop renormalizability of its stochastic field theo
The renormalizability criteria are based on the followi
definitions. For renormalizable and super-renormaliza
theories the counterterms needed to cancel the diverge
are equal to, or fewer in number than the terms appearin
the zero-loop action, which implies that the Seeley-DeW
coefficients are expandable in terms of thesameoperator
basis appearing in the classical action. In particular, this
sis set consists of$] tf,¹2f,1,f,f2, . . . ,fN%. For non-
renormalizable theories this criterion fails. That is, there
terms in the integrated Seeley-DeWitt coefficients that do
appear in the classical action@14,15,32,33#.
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By comparing the zero-loop action equation~12! with the
divergent terms of the one-loop effective action, it is easy
see that the latter do not contain any field operators not
ready present in the bare~classical! action. The divergent
contributions to the one-loop effective action
d-dimensions are given by

Ge
(12 loop)@f;v0#5

A
2

Ad

e1/22d/4

S 1

2
2

d

4D E ddx dt@c1~f!2c1~v0!#

1O~e12d/4!

5
A
2

Ad

e1/22d/4

S 1

2
2

d

4D E ddx dt$V9~f!

3@Df2V~f!#1V9~v0!V~v0!%

1O~e12d/4!. ~62!

Some remarks are in order. First of all we point out the f
that the one-half Seeley-DeWitt coefficients of the field a
ghost mutually cancel out. This cancellation is special to
RD system and does not take place for generic SPDEs.
ondly, the ill-defined quantity ‘‘e0/0’’ arising in d52 must
be replaced by log(V2e)5log(V2/Vcut-off

2 ). The dimension-
full ~but arbitrary! parameterV is required to make the ar
gument of the logarithm dimensionless. It is often more co
venient to introduce a cut-off in wavenumber, rather than
frequency. In Lorentz invariant theories~QFTs, for example!
these are essentially equivalent and it is usual to adopt u
where the speed of light is one. In the RD system this wo
be inappropriate, since the equation is not Lorentz invaria
Instead, one notes that dimensionally

@e#5@proper times#

5@physical timet#2

5@n#22@distance#4, ~63!

and therefore, in terms of a wavenumber cut-offL and a
wavenumber subtraction pointm

‘ ‘ e0/0’’ → log~V2e!5 log~V2/Vcut-off
2 !5 log~m4/L4!.

~64!

~This observation is important when comparing differe
regularization schemes; for instance the effective poten
calculation of Ref.@5# uses a wavenumber cut-off.!

Thirdly, it is of great importance to study thetype of
divergence arising in the one-loop effective action for t
RD equation, i.e., logarithms versus~fractional! power. From
the above we see that the type of divergence depends on
number ofspacedimensionsd. If d is odd, there will never
be logarithmic divergences to one-loop order in the RD fi
theory; to get a logarithm, the space dimensionality must
even. A similar feature holds also for the one-loop effect
action for QFTs in oddspacetimedimensions@20,33#. We
can conclude that the appearance of logarithmic divergen
2-9
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for specific space dimensions is not an artifact of the
field theory, nor of SPDEs, nor is it an artifact of the reg
larization scheme we have employed. In QFT the RG
yield the running of the coupling constants, i.e., give t
scale dependence, if and only if, there are logarithmic div
gences in the effective action. Thus, we can already pre
that the parameters in the RD equation will not run in t
ultraviolet region~to one-loop order! for odd space dimen-
sions@33#.

Nevertheless, the one-loop effective action in odd sp
dimensions still contains divergences~though not ford51),
which must be subtracted by suitable counterterms, but o
this subtraction has been performed, the remaining finite
Gfinite

(12 loop) is independent of the subtraction scalem.

VI. RENORMALIZATION OF THE RD EFFECTIVE
ACTION

In this section we calculate the counterterms needed
renormalize the one-loop effective action. We first start w
the bare classical action equation~12! for the reaction-
diffusion equation

S@f#5 1
2 E dnx~] tf2n¹2f2V@f#!2

5 1
2 E dnxS ] tf2n¹2f2(

j 50

N
l j

j !
f j D 2

. ~65!

The bare parameters~no subscript! are related to the renor
malized ones~denoted by a subscriptR) as follows

f5Z21/2fR , with Z511dZ, ~66!

l j5l j
R1dl j , ~67!

n5nR1dn, ~68!

with dZ, dl j , and dn the corresponding counterterms f
Z, l j , and n, respectively.~Our convention for the defini-
tion of the wavefunction renormalization constantZ does not
follow the standard one in QFT@14,15#.!

Our task consists in demonstrating that all the divergen
appearing in the regulated one-loop effective action can
cancelled by suitable choices for these counterterms. In
fect, we absorb the divergences into the~bare! parameters of
the RD equation byrenormalizing these parameters. If w
write the bare action in terms of the renormalized parame
and counterterms, and keep up to linear order in the coun
terms~which is sufficient for a one-loop analysis!, we find
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S@f#5 1
2 E dnxS ] tfR2nR¹2fR2(

j 50

N
l j

R

j !
f R

j D 2

2
dZ

2 E dnxS ] tfR2nR¹2fR2(
j 50

N
l j

R

j !
f R

j D 2

2E dnxS ] tfR2nR¹2fR2(
j 50

N
l j

R

j !
f R

j D
3S dn¹2fR1(

j 50

N f R
j

j ! Fdl j1dZ
l j

R~12 j !

2 G D ,

which can be written in a more compact and transpar
notation as follows

S@f#5 1
2 E dnx~DRfR2VR@fR# !2

2
dZ

2 E dnx~DRfR2VR@fR# !2

2E dnx~DRfR2VR@fR# !S dn¹2fR1(
j 50

N f R
j

j !

3Fdl j1dZ
l j

R~12 j !

2 G D ~69!

5SR@fR ,m#1Sd@fR#, ~70!

where we have introduced the scale dependent renorma
actionSR@fR ,m#

SR@fR ,m#[ 1
2 E dnx„Z1/2~m!] tf2nR~m!Z1/2~m!¹2f

2V@Z1/2f,l j
R~m!#…2, ~71!

with

VR@fR#[V@Z1/2f,l j
R~m!#5(

j 50

N
l j

R~m!

j !
Zj /2~m!f j ,

~72!

the renormalized~scale dependent! potential.
The meaning ofDR is clear from inspection. The fina

equality in Eq.~70! defines the finite, renormalized actionSR
and the divergent~but regulated! counterterm actionSd . The
individual counterterms appearing inSd will be used to can-
cel off the divergences arising in Eq.~62!. We carry out this
cancellation separately in each space dimension since
case leads to structurally different divergences@see Eq.~62!#.

A. dÄ0 counterterms and renormalization

The cased50 is very simple: in zero space dimensio
there is no diffusion. There is a brief discussion in Ref.@5#
and we do not belabor the point here except to reiterate
in d50 the RD equation is one-loop renormalizable and o
loop finite.
2-10
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B. dÄ1 counterterms and renormalization

In one space dimension the~formally! divergent effective
action is given by

Ge
(12 loop)@fR#522AA1e21/4E dx dt@c1/2#1O~A 2!,

~73!

with A15G(1/4)/@8p(pnR)1/2#. We did not explicitly write
this term in Eq.~62! since it vanishes identically.

From our previous calculation of the Seeley-DeWitt co
ficients we know that@c1/2#50 ~in all dimensions!, which
tells us that in one space dimension there are no divergen
that is, the theory is one-loop finite and there is no need
introduce counterterms. Since no renormalization is requi
there will be no scale dependence in the parameters app
ing in the RD equation. The beta functions,bO[m dO/dm
~encoding the scale dependence of the parameters! are there-
fore zero@at least up to orderO(A 2)#, and we have

Z511O~A 2!, ~74!

n5nR1O~A 2!, ~75!

l j5l j
R1O~A 2!. ~76!

C. dÄ2 counterterms and renormalization

In two space dimensions the divergent effective action
given by Eq.~62!

Ge
~12 loop!@fR#51

AA2

2
log~m4/L4!E d2xW dt@c1#, ~77!

whereA251/(16pnR).
From the calculation of the Seeley-DeWitt coefficients

know that ford52

@c1/2#50, ~78a!

@c1#5VR9 @fR#~DfR2VR@fR# !, ~78b!

where we have written the Seeley-DeWitt coefficient@c1# in
terms of the renormalized parameters as we are only wor
to one-loop order. Therefore, for the divergent part of eff
tive action we can write

Ge
(12 loop)@fR#5

A
8pnR

log~m/L!E d2xW dt VR9 @fR#

3~DRfR2VR@fR# !. ~79!

In order to determine the value of the counterterms and
cancel them off, we must set

Ge
(12 loop)@fR#52Sd@fR#1finite. ~80!

This cancellation can be made up to a residual finite but s
dependent logarithm. This is because the difference of
divergent logarithms can be finite andnonzero. The counter-
terms are proportional to log(m/L), wherem is an arbitrary
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scale needed to render the argument dimensionless, bu
scale need not coincide withm0, the other arbitrary scale
needed to render the argument of the other logarith
log(m0 /L), dimensionless@33#.

If we perform this cancellation, we obtain the followin
m-dependent family of solutions for the countertermsdl j

A
2

A2 log~m2/L2!VR9 @f#

5
A
2

A2 log~m2/L2!(
j 50

N
l j

R

j !
j ~ j 21!f j 22

5(
j 50

N
dl j

j !
f j . ~81!

As we are working to one-loop order, we can setZ(m) equal
to one inVR9 . We can then read off the individual counte
terms from this equation, using the linear independence
the basis$] tf,¹2f,1,f,f2, . . . ,fN%, to obtain

dZ501O~A 2!, ~82a!

dn501O~A 2!, ~82b!

dl05
A

8pnR
log~m/L!l2

R1O~A 2!, ~82c!

dl15
A

8pnR
log~m/L!l3

R1O~A 2!, ~82d!

A

dlN225
A

8pnR
log~m/L!lN

R1O~A 2!, ~82e!

dlN21501O~A 2!, ~82f!

dlN501O~A 2!. ~82g!

In particular, we see that there is no wavefunction renorm
ization nor diffusion constant renormalization in two dime
sions at one-loop order. The couplings associated with
highest and next-to-highest powers of the field (lN21

R ,lN
R)

do not require renormalization to this order.
As pointed out above, due to the logarithmic divergen

in two dimensions, when we subtract the divergences fr
the counterterm action, we are left with a finitem-dependent
logarithmic piece in addition to the renormalized action, th
is

G@f#5S@f#1Ge
(12 loop)@f#1Gfinite

(12 loop)@f#

5SR@fR ,m#1Sd@fR#1Ge
(12 loop)@fR#

1Gfinite
(12 loop)@fR#

5SR@fR ,m#1
AA2

2
logS m0

4

m4D E d2xW dt~DRfR

2VR@fR# !VR9 @fR#1O~A 2!. ~83!
2-11



ra
ce

n-
p

o
d

E
e

th
e

n

or-

the
el

ts

eta
en-

ing

t
ta
-

e as

s in

ion-

r
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We insert this expression into Eq.~61! to obtain the one-loop
RGE

m
d

dm
~DRfR2VR@fR# !5

A
8pnR

VR9 @fR#1O~A 2!.

~84!

In arriving at this equation, we have cancelled an ove
commonfactor of the classical equation of motion, sin
DRfR2VR@fR#Þ0 in general.

By collecting up the coefficients of the linearly indepe
dent terms in Eq.~84! we find the corresponding one-loo
RGEs and beta functions ind52 to be given by

bZ5m
dZ

dm
501O~A 2!, ~85a!

bn5m
dnR

dm
501O~A 2!, ~85b!

bl0
5m

dl0
R

dm
52

A
8pnR

l2
R1O~A 2!, ~85c!

bl1
5m

dl1
R

dm
52

A
8pnR

l3
R1O~A 2!, ~85d!

A

blN22
5m

dlN22
R

dm
52

A
8pnR

lN
R1O~A 2!, ~85e!

blN21
5m

dlN21
R

dm
501O~A 2!, ~85f!

blN
5m

dlN
R

dm
501O~A 2!. ~85g!

Since there is no wavefunction nor diffusion constant ren
malization the set of one-loop RGEs can be summarize
the following way

m
dVR@fR#

dm
52

A
8pnR

VR9 @fR#1O~A 2!. ~86!

This equation agrees with the computation of the RG
based on the effective potential, which was calculated in R
@5#. @See Eq.~51! of that paper.# Furthermore, if we define
m5m0 exp(t), the previous RGE becomes

dVR@fR#

dt
52

A
8pnR

d2VR@fR#

dfR
2

1O~A 2!, ~87!

which implies the fact that the one-loop RGE ind52 be-
haves like an anti-diffusion process in field space.

At this point it is interesting to compare our results wi
independent renormalization group results obtained, for
ample, by Cardy in Ref.@6#. If a path integral is derived
03613
ll

r-
in

s
f.

x-

~along the lines given in Refs.@21–23#! for the two-body
processA1A→ inert, then the corresponding RD equatio
turns out to be given by@6#

Df522lf21h~x!, ~88!

where however, the noise must be pure imaginary. A ren
malization group analysis of Eq.~88! shows that the fieldf
does not require wavefunction renormalization, nor does
diffusion constantn renormalize. Our one-loop heat kern
computation performed for anarbitrary reaction polynomial,
Eqs.~85a! and~85b!, is in complete accord with these resul
~even though we treat real noise!. Returning to Eq.~88!, the
only nonvanishing renormalization is that of the couplingl.
It turns out that the one-loop renormalization group b
function is exact, and when expressed in terms of the dim
sionless renormalized couplinggR is given by Ref.@6#

b~gR!5bgR
2 , ~89!

in d52 dimensions, whereb is a positive constant~the value
of this constant is not specified in Ref.@6#!.

In order to compare these results, we define the follow
dimensionless couplings

gj[
A

8pnR

l j 12
R

l j
R

, 0< j <N22, ~90!

provided, of course, that for a givenj the coupling constan
l j

RÞ0. This definition together with the hierarchy of be
functions given in Eq.~85! show that the dimensionless cou
pling constantsgj satisfy the following one-loop RGE

b~gj ![m
dgj

dm
5gjS l̇ j 12

R

l j 12
R

2
l̇ j

R

l j
RD , ~91!

where the overdot is shorthand notation formd/dm. We now
consider an RD equation of the type given in Eq.~1! with
real noise and for a degree-two (N52) reaction polynomial
equation~3! V@f#5l01l2/2f2. This particular choice is
made in order to be able to treat an RD equation as clos
possible in structure to the one in Eq.~88!. Apart from the
imaginary versus real noise, the essential difference lie
the fact that we~must! have a tadpole term, whereas Eq.~88!
lacks such a term. In this case there is only one dimens
less coupling which can be defined, namely

g05
A

8pnR

l2
R

l0
R

, ~92!

and Eq.~91! implies the following one-loop beta function fo
this dimensionless coupling

b~g0!5g0S l̇2
R

l2
R

2
l̇0

R

l0
RD 52g0S l̇0

R

l0
RD 5g0

2 . ~93!

This follows from Eq.~85c! and from the fact thatl̇2
R}l4

R

50.
2-12
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Thus, for the purposes of renormalization and calculat
the RGEs, this example demonstrates that it is equivalen
start from a complex or real SPDE, and that the field the
can be derived from microscopic principles or obtained
means of the procedure outlined in Ref.@4#.

D. dÄ3 counterterms and renormalization

In three space dimensions the divergent effective actio
given by Eq.~62!

Ge
(12 loop)@fR#522AA3e21/4E d3xW dt@c1#, ~94!

with A35G(3/4)/@16p(pnR)3/2#.
The net Seeley-DeWitt coefficient is given by

@c1#5V9@fR#~DfR2VR@fR# !. ~95!

The vanishing of the index one-half Seeley-DeWitt coe
cient means that the divergent effective action ind53 be-
comes

Ge
(12 loop)@fR#522AA3e21/4E d3xW dtV9@fR#

3~DRfR2V@fR# !1O~A 2!. ~96!

In order to determine the value of the counterterms we m
once again set

Ge
(12 loop)@fR#52Sd@fR#1finite. ~97!

The last identification yields the following (m-independent!
set of counterterms

dZ501O~A 2!, ~98a!

dn501O~A 2!, ~98b!

dl052AA3l2
Re21/41O~A 2!, ~98c!

dl152AA3l3
Re21/41O~A 2!, ~98d!

A

dlN2252AA3lN
Re21/41O~A 2!, ~98e!

dlN21501O~A 2!, ~98f!

dlN501O~A 2!. ~98g!

As there is no scale dependent logarithmic divergence
one-loop order in three-dimensions, all the beta functio
vanish@33#.

VII. DISCUSSION

In this paper we have generalized and applied a met
based on the DeWitt-Schwinger proper time expansion
calculate the ultraviolet divergences of the one-loop effec
action associated to the RD equation. This particular
03613
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proach involves the physical degrees of freedom plus
‘‘ghost’’ fields, which are needed to account for the fun
tional Jacobian that arises from a certain change of varia
@4#. For RDs this Jacobian is generally nonvanishing a
must be taken into account in the computation of the ch
acteristic functional. The importance of the effective acti
lies in the fact that it is the quantity needed to derive eq
tions of motion, which correctly take into account fluctu
tions and interactions to a given number of loops. The eff
tive action encodes the dynamics of the system. By contr
the effective potential can only tell us about static solutio
In order to know whether the minima of the effective pote
tial are relevant as solutions of the late time behavior of
system we must see how accessible these solutions are
before any of these questions can be answered, the effe
action must be calculated.

The one-loop effective action is given in terms of a fun
tional determinant, which must be regulated and renorm
ized. The heat kernel technique is an established met
~used in QFT! for carrying this out. In QFT the functiona
determinant appearing in the one-loop effective action
usually quadratic in both time (] t

2) and space derivative
(¹2). In passing to a Euclidean spacetime, the correspond
proper time equation for the kernel to be solved Eq.~29! is a
heat equation for diffusion inn5d11 dimensions, withs
playing the roˆle of diffusion time. This is why its Green
function ~whether exactly or approximately calculated! is
justifiably denoted as the heat kernel. However, for SPD
such as those considered in Ref.@4#, the functional determi-
nant in the corresponding one-loop effective action involv
not only a ‘‘mismatch’’ between the number of spatial a
temporal derivatives, but also fourth- or even higher-ord
spatial derivatives. We have seen an explicit example of
in the RD equation treated here, which yields second orde
time but fourth order in space derivatives, (¹2)2, for its as-
sociated operator determinant.~Even higher derivatives will
be encountered in the one-loop effective actions based on
Sivashinski and the Swift-Hohenberg equations: two ti
derivatives but eight spatial derivatives.! While much is
known about the standard heat kernel and its associ
Seeley-DeWitt coefficients, very few~as far as the author
are aware! of these ideas have been applied to other type
field theories whose fluctuations may be of a nonquant
nature~i.e., noise! @29#. The heat kernel technique~and its
generalization! is well suited to regularize one-loop effectiv
actions, and therefore, is very useful to handle theories w
derivative-type interactions, as well as higher derivative ‘‘k
netic’’ terms.

We have applied these techniques to compute the o
loop effective action for the RD equation. As regards
ultraviolet renormalizability, we found that the terms appe
ing at one-loop order have the same structure, i.e., invo
the same terms present already at the level of the ‘‘classic
or zero-loop action. Strictly speaking, this claim holds tr
only if a certain bare constant is added to the original eq
tion of motion, as we have seen. This constant, or ‘‘ta
pole,’’ is needed to carry out the one-loop renormalization
the leading divergence that appears in the effective act
Moreover, this constant admits a simple physical interpre
2-13



r
t
r

pic
le

-
a-
a

ho
o
on
W
B
t
it
r-

hi
t
o

no

ee

v
R
m
r-

d
-

el
a

fo
liz
e
p

d
a

ra
ll a
b

at
gu
c
t
an
h
ec

th
ti

o

ex-
no-
ve

nd

pre-
the

t of
oly-
ns
rn

d
rth-

as-

p-
far,
ra-
ch
of
of

he
a
d

olu-
e

-

try
e-
y

ish
al
by
-

his

on
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tion and can be ascribed either to a constant flux rate o
the mean value of the additive noise source. In regards to
scaleof application of the RD equation, the one-loop reno
malizability indicates that although RD is a macrosco
equation@only intended to make physical sense for sca
greater than a certain minimum length scaleL0, defined by
the underlying molecular physics~if one is discussing chemi
cal reactions!#, we have shown in this paper that the ultr
violet behavior of the RD equation is controlled, and th
considered as a strictly phenomenological equation its s
distance behavior ismuch better than one had any right t
expect. The short distance structure of this effective acti
has been revealed via the calculation of the Seeley-De
coefficients up to one-loop order in the noise amplitude.
means of this information, we have been able to establish
one-loop finiteness of RD equations driven by additive wh
noise ford50 andd51 space dimensions and their reno
malizability for d52 andd53 space dimensions. Ind52
space dimensions there are logarithmic divergences w
lead to running,~scale dependence! of the parameters tha
describe the RD equation. There is no wavefunction ren
malization at one-loop order. These results hold for poly
mial reaction kinetics of arbitrary degreeN. ~Note: The ab-
sence of wavefunction renormalization has already b
demonstrated for the case of a~complex! RD equation de-
scribing pair reactions (N52), where it turns out that the
one-loop beta function ind52 is exact@6#.! When taken as
a model for pattern development, this result becomes e
more striking since this means we can safely use the
equation to investigate the important short distance and s
time limit of the field correlations that arise in pattern fo
mation, as already remarked earlier.

The RGE results obtained here are identical to those
rived ~by different means! from an effective potential calcu
lation for RD equations presented in Ref.@5#. The effective
potential is the effective action restricted to constant fi
configurations and plays an important role in uncovering p
terns of symmetry breaking and in the onset of pattern
mation. Nevertheless, the claim of the one-loop renorma
ability made in Ref.@5# requires the investigation of th
wavefunction renormalization which was beyond the sco
of that paper. The work presented here is also intende
complete and complement that discussion. Moreover,
pointed out there, the combined effects of noise and inte
tions is to shift the symmetric states of the system, as we
to change the nature of the linear instabilities that may
induced by perturbations around these new states. A sp
pattern is, by definition, a spatially inhomogeneous confi
ration with a higher or lesser degree of symmetry, if any su
symmetry is at all present. Thus, to investigate the onse
the spatial-temporal patterns resulting from fluctuations
interactions, one must go beyond the effective potential. T
requires working with inhomogeneous fields and the eff
tive action.

The cautious reader will have noticed that most of
calculations developed here depend solely on the reac
potentialV and its derivatives and not on the fact thatV is a
polynomial. In fact, this is easy to see from the structure
our Seeley-DeWitt coefficients Eqs.~59a!–~59b! and~60a!–
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~60b!. Thus, the question arises if our treatment can be
tended and applied to handle RD equations with nonpoly
mial reaction kinetics. The answer is in the affirmati
provided that the potential admits a real solution to Eq.~18!
~e.g.,V@f#;sinh@f#) since we need a constant backgrou
about which to expand the action, as indicated in Eq.~62!.
Provided such a solution exists, the rest of the analysis
sented here carries through as is, up to the extraction of
renormalization group equations~which will again be nonva-
nishing only ford52). At this point the explicit functional
form of the potential changes the nature of the basis se
independent field operators that leads to the RGEs. Nonp
nomial reaction kinetics do indeed arise in many applicatio
in chemical physics and in the modeling of biological patte
formation, typically in the form of rational functions~i.e.,
ratios of polynomials! and wheneverconstraintsare to be
imposed on the model@1,2#. When a coarse-grained fiel
theoretic approach is applied to density waves in ea
quakes, for example, a stochastic PDE for the~scalar! slip
field ~which measures the relative displacement of two el
tic media in contact taken along the surface of contact! re-
sults which depends on the cosine of the slip field, cosf, and
is driven by additive white noise@34#. Thus, the work pre-
sented here is broad in scope.

Finally, these results also have the following practical a
plication: as analytic calculations can be carried only so
it is clear that numerical studies of SPDEs are crucial. Ult
violet renormalizability corresponds to the situation in whi
long distance physics is largely insensitive to the details
short distance physics. In considering numerical studies
the RD equation, we can therefore assert the cut-offinsensi-
tivity of the numerical solutions, at least to one-loop.~In
numerical studies, the ultraviolet cut-off is provided by t
lattice spacing.! This is of paramount importance since
numerical study of RD will give us the information neede
to see if the system thermalizes, if it has steady state s
tions, and most importantly, if the minima of the effectiv
potential calculated in Ref.@5# are explored in the time evo
lution of the system.
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APPENDIX A: FREE GREEN FUNCTION FOR THE RD
EFFECTIVE ACTION

In this Appendix we calculate the free Green functi
appearing in Eq.~33!. The only ‘‘difficult’’ part of the analy-
2-14
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sis is dealing with the fourth-order spatial bi-harmonic o
erator (¹2)2. Using translational invariance to setx2x8
→x, and introducing Fourier transforms (dnk5ddk dv) as
follows

Gfree~xW t,0W 0us!5E dnk

~2p!nE2`

1`dV

2p
G̃free~kWvuV!

3exp@ i ~kW•xW2vt2Vs!#, ~A1!

we easily find that

G̃free~kWvuV!5
1

v21~nk2!22 iV
, ~A2!

wherek25kW•kW . By inverting the Fourier transform equatio
~A1! one obtains the following integral representation for t
free Green function

Gfree~x,0us!5E ddk

~2p!dE dv

2pE dV

2p

1

v21~nk2!22 iV

3exp@ i ~kW•xW2vt2Vs!#. ~A3!

We first perform the integral overV by means of a contou
integral in the complexV-plane. There is only one simpl
pole on the negative imaginaryV-axis and we close the
~semi-circular! contour~centered at the origin! in the lower
half plane. As the radius of this arc goes to infinity, only t
contribution along the realV-axis remains (s.0). As a re-
sult and by the Residue Theorem we have~the contour is
closed in the clockwise sense!

Gfree~x,0us!5E ddk

~2p!dE dv

2p
exp@ i ~kW•xW2vt !#

3exp„2s@v21~nk2!2#…. ~A4!

We can go further and compute thev integral exactly to
obtain

Gfree~x,0us!5S 1

4psD
1/2

expS 2
t2

4sD E ddk

~2p!d

3exp@2s~nk2!21 ikW•xW #, ~A5!

and the remaining momentum integral is manifestly conv
gent~for d.0). As for the boundary condition, note that fo
s→0, lims→0Gfree(xW t,0W 0us)5d(t,0)dd(xW ,0W ) ~in the sense of
distributions! as it must, since

d~ t !; lim
s→0

S 1

4psD
1/2

exp@2t2/~4s!#, ~A6!

and

dd~xW !5E ddkW

~2p!d
eikW•xW. ~A7!
03613
-

r-

One can also check that the boundary condition is satisfi
before integrating overv, by simply settings50 in Eq.
~A4!. Let us now work out the momentum integration.

The angular integration is given by

E dVd21 exp~ ikW•xW !5~2p!d/2
J(d22)/2~kx!

~kx!(d22)/2
. ~A8!

The exact Green function or kernel for our free ‘‘heat’’ o
erator in Eq.~32! is

Gfree~xW t,0W 0us!5S 1

4psD
1/2

expS 2
t2

4sD 1

~2p!d/2

3E
0

1`

kd21dk exp@2s~nk2!2#

3FJ(d22)/2~kuxu!

~kuxu!(d22)/2 G . ~A9!

This solves the differential equation~32! and satisfies the
boundary conditionGfree(xW ,tu0)5dd(xW )d(t) for vanishing
proper times, hence this is theuniquesolution of Eq.~32!.

Important point:as remarked above, translational inva
ance implies thatGfree(xW t,yW t8us)5Gfree„uxW2yW u,(t2t8)us….
We are treating stochastic processes on a
d12-dimensional background (d-space dimensions plus rea
physical timet plus Schwinger proper times).

Using the Taylor series representation

Jl ~z!

zl
5S 1

2D l

(
n50

1`
~2 !n~z/2!2n

n!G~ l 1n11!
, ~A10!

and integrating Eq.~A9! term-by-term, we find that~after
making use of the time and space translational invarianc
the Green function!

Gfree~xW t,xW8t8us!5S 1

4psD
1/2

~sn2!2d/4

3expF2
~ t2t8!2

4s G 1

2d11pd/2

3 (
n50

1` S 2
1

4D n GS n

2
1

d

4D
n!GS d

2
1nD S uxW2xW8u2

nAs
D n

~A11!

5Ad expF2
~ t2t8!2

4s Gs21/2 2 d/4(
n50

1` S 21

4 D n

3Cd,n

GS d

2D
n!GS d

2
1nD S uxW2xW8u2

nAs
D n

, ~A12!
2-15
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where

Ad5S 1

4p D 1/2 pd/2GS d

4D
2~2p!dGS d

2D S 1

n2D d/4

, and

Cd,n5

GS d12n

4 D
GS d

4D . ~A13!

Special attention should be paid to the fact that this f
Green function involves a series inhalf-integer powers of
Schwinger proper time,As, a feature that we use in choosin
our ansatz for the full Green function.

APPENDIX B: HOMOGENEOUS FIELD
CONFIGURATIONS

For constant~homogeneous and static! fields, f5v0, the
associated ‘‘heat kernel’’ can be solved forexactly. We sim-
ply present the final result and skip the details of a calcu
tion that is an analog of that forGfree(x,x8us). The on-
diagonal Green functionGfield

(0) (x,xus) is given by

Gfield
(0) ~x,xus!5Ads21/22d/4 exp†2s~V9@v0#V@v0#

1V8@v0#V8@v0# !‡(
l 50

1`

~As 2 V8@v0# ! l
Cd,l

l !

5Gfree~x,xus!exp†2s~V9@v0#V@v0#

1V8@v0#V8@v0# !‡(
l 50

1`

(As 2 V8~@v0# ! l
Cd,l

l !
,

~B1!

where we have again made use of the definitionCd,l . We
conclude that

(
l 50

1`

@bl /2#sl /25exp†2s~V9@v0#V@v0#1V8@v0#V8@v0# !‡

3 (
l 50

1`

~As 2 V8@v0# ! l
Cd,l

l !
. ~B2!

We now match the first fractional powers ins and obtain the
Seeley-DeWitt coefficients for a constant field configurat
v0

@b0#51, ~B3!

@b1/2#52 Cd,1V8@v0#, ~B4!

@b1#52V9@v0#V@v0#. ~B5!

The coefficients forGghost
(0) can be immediately obtained from

the previous Seeley-DeWitt coefficients by settingV9@v0#
50. That is
03613
e

-

@a0#51, ~B6!

@a1/2#52 Cd,1V8@v0#, ~B7!

@a1#5S d

2
21DV8@v0#V8@v0#. ~B8!

Finally, for the net Seeley-DeWitt coefficients, we can wr

@c0#50, ~B9!

@c1/2#50, ~B10!

@c1#52V9@v0#V@v0#. ~B11!

These results are consistent with the net integrated See
DeWitt coefficients and with the physical and ghost in
grated Seeley-DeWitt coefficients presented in the body
the paper@Eqs.~59a!–~60d!#.

APPENDIX C: THE FEYNMAN-HELLMAN FORMULA

We write the Feynman-Hellman formula in the form@30#

d

de
exp~A1eB!5E

0

1

dl exp@ l ~A1eB!#B

3exp@~12l !~A1eB!#. ~C1!

This equation is central to the computation of the Seel
DeWitt coefficients presented in the paper. For instance
we take the trace and then use the cyclic property, we
write

d

de
Tr@exp~A1eB!#5Tr$B exp@~A1eB!#%. ~C2!

We differentiate the previous equation to obtain

d2

de2
Tr@exp~A1eB!#5E

0

1

dl Tr$B exp@ l ~A1eB!#B

3exp@~12l !~A1eB!#%. ~C3!

We can conclude that

Tr@exp~A1eB!#5Tr@exp~A!#1e Tr@B exp~A!#

1
e2

2 E0

1

dl Tr$B exp~ l A!B

3exp@~12l !A#%1O~e3!. ~C4!

This perturbative expansion is the basis for extracting
first two integratedSeeley-DeWitt coefficients.
2-16
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